En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Rational curves on K3 surfaces

Bookmarks Report an error
Multi angle
Authors : Gounelas, Frank (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Bogomolov and Mumford proved that every complex projective K3 surface contains a rational curve. Since then, a lot of progress has been made by Bogomolov, Chen, Hassett, Li, Liedtke, Tschinkel and others, towards the stronger statement that any such surface in fact contains infinitely many rational curves. In this talk I will present joint work with Xi Chen and Christian Liedtke completing the remaining cases of this conjecture, reproving some of the main previously known cases more conceptually and extending the result to arbitrary genus in a suitable sense.

Keywords : curves on K3 surfaces; rational curves; deformation of curves

MSC Codes :
14J28 - $K3$ surfaces and Enriques surfaces

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 17/12/2019
    Conference Date : 28/11/2019
    Subseries : Research talks
    arXiv category : Algebraic Geometry
    Mathematical Area(s) : Algebraic & Complex Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:53:10
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-11-28_Gounelas.mp4

Information on the Event

Event Title : Algebraic Geometry and Complex Geometry / Géométrie algébrique et géométrie complexe
Event Organizers : Benoist, Olivier ; Floris, Enrica
Dates : 25/11/2019 - 29/11/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/2074.html

Citation Data

DOI : 10.24350/CIRM.V.19580803
Cite this video as: Gounelas, Frank (2019). Rational curves on K3 surfaces. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19580803
URI : http://dx.doi.org/10.24350/CIRM.V.19580803

See Also

Bibliography



Bookmarks Report an error