En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Adaptive rates for trend filtering using dual certificates - Lecture 2

Bookmarks Report an error
Virtualconference
Authors : Van de Geer, Sara (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The theory for trend filtering has been developed in a series of papers: Tibshirani [2014], Wang et al. [2016], Sadhanala and Tibshirani [2019], Sadhanala et al. [2017], Guntuboyina et al. [2020], and see Tibshirani [2020] for a very good overview and further references. In this course we will combine the approach of Dalalyan et al. [2017] with dual certificates as given in Candes and Plan [2011]. This allows us to obtain new results and extensions.

The trend filtering problem in one dimension is as follows. Let $Y\sim \mathcal{N}(f^{0},\ I)$ be a vector of observations with unknown mean $f^{0} :=\mathrm{E}Y$. Let for $f\in \mathbb{R}^{n},$
$$
(\triangle f)_{i}\ :=\ f_{i}-f_{i-1},\ i\geq 2,
$$
$$
(\triangle^{2}f)_{i}\ :=\ f_{i}-2f_{i-1}+f_{i-2},\ i\geq 3,
$$
$$
(\triangle^{k}f)_{i}\ :=\ (\triangle(\triangle^{k-1}f))_{i},\ i\geq k+1.
$$
Then we consider the estimator
$$
\hat{f}\ :=f\min_{\in \mathbb{R}^{n}}\{\Vert Y-f\Vert_{2}^{2}/n+2\lambda\Vert\triangle^{k}f\Vert_{1}\}.
$$
Let $S_{0} :=\{j\ :\ (\triangle^{k}f^{0})_{j}\neq 0\}$ and $s_{0} :=|S_{0}|$ its size. We want to prove a "oracle'' type of result: for an appropriate choice of the tuning parameter, and modulo $\log$-factors, with high probability $\Vert\hat{f}-f^{0}\Vert_{2}^{2}/n \lesssim (s_{0}+1)/n$. For this one may apply the general theory for the Lasso. Indeed, the above is a Lasso estimator if we write $f=\Psi b$ where $\Psi\in \mathbb{R}^{n\times n}$ is the "design matrix'' or "dictionary'' and where $b_{j}=(\triangle^{k}f)_{j}, j\geq k+1$. We present the explicit expression for this dictionary and then will notice that the restricted eigenvalue conditions that are typically imposed for Lasso problems do not hold. What we will do instead is use a "dual certificate'' $q$ with index set $\mathcal{D} :=\{k+1,\ .\ .\ .\ ,\ n\}$. We require that $q_{j}=\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(\triangle^{k}f^{0})_{j}$ if $j\in S_{0}$ and such that $|q_{j}|\leq 1-w_{j}$ if $j\in \mathcal{D}\backslash S_{0}$, where $\{w\}_{j\in D\backslash S_{0}}$ is a given set of noise weights. Moreover, we require $q_{k+1}=q_{n}=0.$ We call such $q$ an interpolating vector. We show for an appropriate choice of $\lambda$
$$
\Vert\hat{f}-f^{0}\Vert_{2}^{2}/n<\sim(s_{0}+1)/n+n\lambda^{2}\Vert\triangle^{k}q\Vert_{2}^{2}
$$
and that the two terms on the right hand side can be up to $\log$ terms of the same order if the elements in $S_{0}$ corresponding to different signs satisfy a minimal distance condition.

We develop a non-asymptotic theory for the problem and refine the above to sharp oracle results. Moreover, the approach we use allows extensions to higher dimensions and to total variation on graphs. For the case of graphs with cycles the main issue is to determine the noise weights, which can be done by counting the number of times an edge is used when traveling from one node to another. Extensions to other loss functions will be considered as well.

Keywords : Lasso; total variation; dual certificates

MSC Codes :
62J05 - Linear regression
62J99 - None of the above but in this section

Additional resources :
https://www.cirm-math.fr/RepOrga/2536/Slides/MMS2020Lecture_vandeGeer.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 11/01/2021
    Conference Date : 15/12/2020
    Subseries : Research talks
    arXiv category : Statistics Theory
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 01:01:36
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-12-17_De Geer 2.mp4

Information on the Event

Event Title : Meeting in Mathematical Statistics / Rencontres de statistique mathématique
Event Organizers : Butucea, Cristina ; Minsker, Stanislav ; Pouet, Christophe ; Spokoiny, Vladimir
Dates : 14/12/2020 - 18/12/2020
Event Year : 2020
Event URL : https://conferences.cirm-math.fr/2536.html

Citation Data

DOI : 10.24350/CIRM.V.19692403
Cite this video as: Van de Geer, Sara (2020). Adaptive rates for trend filtering using dual certificates - Lecture 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19692403
URI : http://dx.doi.org/10.24350/CIRM.V.19692403

See Also

Bibliography

  • TIBSHIRANI, Ryan J., et al. Adaptive piecewise polynomial estimation via trend filtering. The Annals of Statistics, 2014, vol. 42, no 1, p. 285-323. - http://dx.doi.org/10.1214/13-AOS1189

  • E. J. Candes and Y. Plan, "A Probabilistic and RIPless Theory of Compressed Sensing," in IEEE Transactions on Information Theory, vol. 57, no. 11, pp. 7235-7254, Nov. 2011, doi: 10.1109/TIT.2011.2161794. - https://doi.org/10.1109/TIT.2011.2161794

  • DALALYAN, Arnak S., HEBIRI, Mohamed, LEDERER, Johannes, et al. On the prediction performance of the lasso. Bernoulli, 2017, vol. 23, no 1, p. 552-581. - http://dx.doi.org/10.3150/15-BEJ756

  • GUNTUBOYINA, Adityanand, LIEU, Donovan, CHATTERJEE, Sabyasachi, et al. Adaptive risk bounds in univariate total variation denoising and trend filtering. The Annals of Statistics, 2020, vol. 48, no 1, p. 205-229. - http://dx.doi.org/10.1214/18-AOS1799

  • SADHANALA, Veeranjaneyulu, TIBSHIRANI, Ryan J., et al. Additive models with trend filtering. The Annals of Statistics, 2019, vol. 47, no 6, p. 3032-3068. - http://dx.doi.org/10.1214/19-AOS1833

  • SADHANALA, Veeranjaneyulu, WANG, Yu-Xiang, SHARPNACK, James L., et al. Higher-order total variation classes on grids: Minimax theory and trend filtering methods. In : Advances in Neural Information Processing Systems. 2017. p. 5800-5810. - https://papers.nips.cc/paper/2017/file/3e60e09c222f206c725385f53d7e567c-Paper.pdf

  • TIBSHIRANI, Ryan J. Divided Differences, Falling Factorials, and Discrete Splines: Another Look at Trend Filtering and Related Problems. arXiv preprint arXiv:2003.03886, 2020. - https://arxiv.org/abs/2003.03886

  • WANG, Yu-Xiang, SHARPNACK, James, SMOLA, Alexander J., et al. Trend filtering on graphs. The Journal of Machine Learning Research, 2016, vol. 17, no 1, p. 3651-3691. - https://dl.acm.org/doi/pdf/10.5555/2946645.3007058



Bookmarks Report an error