En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Symplectic Landau-Ginzburg models and their Fukaya categories

Bookmarks Report an error
Virtualconference
Authors : Auroux, Denis (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : This partly expository talk focuses on the notion of ”symplectic Landau-Ginzburg models”, i.e. symplectic manifolds equipped with maps to the complex plane, ”stops”, or both, as they naturally arise in the context of mirror symmetry. We describe several viewpoints on these spaces and their Fukaya categories, their monodromy, and the functors relating them to other flavors of Fukaya categories. (This touches on work of Abouzaid, Seidel, Ganatra, Hanlon, Sylvan, Jeffs, and others).

Keywords : Fukaya categories; homological mirror symmetry; symplectic fibrations

MSC Codes :
53D40 - Floer homology and cohomology, symplectic aspects
53D37 - Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category
14J33 - Mirror symmetry

Additional resources :
https://www.cirm-math.fr/RepOrga/2558/Slides/Auroux.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 17/05/2021
    Conference Date : 29/04/2021
    Subseries : Research School
    arXiv category : Symplectic Geometry
    Mathematical Area(s) : Topology
    Format : MP4 (.mp4) - HD
    Video Time : 01:00:04
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-04-29_Auroux.mp4

Information on the Event

Event Title : From Hamiltonian Dynamics to Symplectic Topology
Event Organizers : Damian, Mihai ; Hofer, Helmut ; Humilière, Vincent ; Oancea, Alexandru ; Vichery, Nicolas
Dates : 26/04/2021 - 30/04/2021
Event Year : 2021
Event URL : https://conferences.cirm-math.fr/2558.html

Citation Data

DOI : 10.24350/CIRM.V.19750303
Cite this video as: Auroux, Denis (2021). Symplectic Landau-Ginzburg models and their Fukaya categories. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19750303
URI : http://dx.doi.org/10.24350/CIRM.V.19750303

See Also

Bibliography

  • ABOUZAID, Mohammed, AUROUX, Denis. Homological mirror symmetry for hypersurfaces in $(C*)^n$, in preparation. -

  • HANLON, Andrew. Monodromy of monomially admissible Fukaya-Seidel categories mirror to toric varieties. Advances in Mathematics, 2019, vol. 350, p. 662-746. - https://doi.org/10.1016/j.aim.2019.04.056

  • JEFFS, Maxim. Mirror symmetry and Fukaya categories of singular hypersurfaces. arXiv preprint arXiv:2012.09764, 2020. - https://arxiv.org/abs/2012.09764



Bookmarks Report an error