En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

On the Viterbo conjecture about Lagrangian spectral norms

Bookmarks Report an error
Virtualconference
Authors : Guillermou, Stéphane (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Let G be a compact Lie group and let M = G/H be a G-homogeneous space, equipped with an invariant metric. We prove that the spectral norm of any compact exact Lagrangian submanifold of the cotangent bundle T*M is bounded in terms of the diameter and dimension of G. Our proof is by sheaf theoretical methods; it recovers some results of Shelukhin and gives some other cases. This is a joint work in progress with Nicolas Vichery.

Keywords : spectral invariants; microlocal sheaf theory

MSC Codes :
53DXX - Symplectic geometry, contact geometry
54B40 - Presheaves and sheaves, See also {18F20}
70Hxx - Hamiltonian and Lagrangian mechanics, See also {58F05}

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 17/05/2021
    Conference Date : 26/04/2021
    Subseries : Research School
    arXiv category : Symplectic Geometry
    Mathematical Area(s) : Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:58:19
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-04-26_Guillermou.mp4

Information on the Event

Event Title : From Hamiltonian Dynamics to Symplectic Topology
Event Organizers : Damian, Mihai ; Hofer, Helmut ; Humilière, Vincent ; Oancea, Alexandru ; Vichery, Nicolas
Dates : 26/04/2021 - 30/04/2021
Event Year : 2021
Event URL : https://conferences.cirm-math.fr/2558.html

Citation Data

DOI : 10.24350/CIRM.V.19750503
Cite this video as: Guillermou, Stéphane (2021). On the Viterbo conjecture about Lagrangian spectral norms. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19750503
URI : http://dx.doi.org/10.24350/CIRM.V.19750503

See Also

Bibliography



Bookmarks Report an error