En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Bayesian multiple testing for dependent data and hidden Markov models - lecture 1

Bookmarks Report an error
Multi angle
Authors : Gassiat, Elisabeth (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Hidden markov models (HMMs) have the interesting property that they can be used to model mixtures of populations for dependent data without prior parametric assumptions on the populations. HMMs can be used to build flexible priors.
I will present recent results on empirical Bayes multiple testing, non parametric inference of HMMs and fundamental limits in the learning of HMMs.

Keywords : multiple testing; hidden Markov models; non parametric inference; classification

MSC Codes :
62G07 - Density estimation
62G10 - Nonparametric hypothesis testing
62M99 - None of the above but in this section

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 15/11/2021
    Conference Date : 26/10/2021
    Subseries : Research School
    arXiv category : Statistics Theory ; Machine Learning
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 01:26:19
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-10-26_Gassiat_1.mp4

Information on the Event

Event Title : End-to-end Bayesian Learning Methods / Solutions de bout-en-bout en apprentissage Bayésien
Event Organizers : Cleynen, Alice ; Gloaguen, Pierre ; Le Corff, Sylvain ; Mira, Antonietta ; Stoehr, Julien
Dates : 25/10/2021 - 29/10/2021
Event Year : 2021
Event URL : https://conferences.cirm-math.fr/2417.html

Citation Data

DOI : 10.24350/CIRM.V.19825003
Cite this video as: Gassiat, Elisabeth (2021). Bayesian multiple testing for dependent data and hidden Markov models - lecture 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19825003
URI : http://dx.doi.org/10.24350/CIRM.V.19825003

See Also

Bibliography

  • ABRAHAM, Kweku, CASTILLO, Ismael, et GASSIAT, Elisabeth. Multiple testing in nonparametric hidden Markov models: An empirical Bayes approach. arXiv preprint arXiv:2101.03838, 2021. - https://arxiv.org/abs/2101.03838

  • ABRAHAM, Kweku, NAULET, Zacharie, et GASSIAT, Elisabeth. Fundamental limits for learning hidden Markov model parameters. arXiv preprint arXiv:2106.12936, 2021. - https://arxiv.org/abs/2106.12936

  • DE CASTRO, Yohann, GASSIAT, Élisabeth, et LACOUR, Claire. Minimax adaptive estimation of nonparametric hidden Markov models. The Journal of Machine Learning Research, 2016, vol. 17, no 1, p. 3842-3884. - https://www.jmlr.org/papers/volume17/15-381/15-381.pdf



Bookmarks Report an error