En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Invariant integrated convexity profiles for Hamilton-Jacobi-Bellman equations and applications

Bookmarks Report an error
Multi angle
Authors : Conforti, Giovanni (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : It has been known for a long time that Hamilton-Jacobi-Bellman (HJB) equations preserve convexity, namely if the terminal condition is convex, the solution stays convex at all times. Equivalently, log-concavity is preserved along the heat equation, namely if one starts with a log-concave density, then the solution stays log-concave at all times. Both these facts are a direct consequence of Prékopa-Leindler inequality. In this talk, I will illustrate how a careful second-order analysis on coupling by reflection on the characteristics of the HJB equation reveals the existence of weaker notions of convexity that propagate backward along HJB. More precisely, by introducing the notion of integrated convexity profile, we are able to construct families of functions that fail to be convex, but are still invariant under the action of the HJB equation. In the second part of the talk I will illustrate some applications of these invariance results to the exponential convergence of learning algorithms for entropic optimal transport.

Keywords : convexity; coupling by reflection HJB characteristics

MSC Codes :
49Q22 - Optimal transportation
49L12 - Hamilton-Jacobi equations in optimal control and differential games

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 14/02/2024
    Conference Date : 23/01/2024
    Subseries : Research talks
    arXiv category : Probability
    Mathematical Area(s) : PDE ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:54:01
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-01-23_Conforti.mp4

Information on the Event

Event Title : PDE & Probability in interaction: functional inequalities, optimal transport and particle systems / Interactions EDP/Probabilité: inégalités fonctionnelles, transport optimal et systèmes de particules
Event Organizers : Monmarché, Pierre ; Reygner, Julien ; Schlichting, André ; Simon, Marielle
Dates : 22/01/2024 - 26/01/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/2988.html

Citation Data

DOI : 10.24350/CIRM.V.20129103
Cite this video as: Conforti, Giovanni (2024). Invariant integrated convexity profiles for Hamilton-Jacobi-Bellman equations and applications. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20129103
URI : http://dx.doi.org/10.24350/CIRM.V.20129103

See Also

Bibliography

  • CONFORTI, Giovanni. Weak semiconvexity estimates for Schrödinger potentials and logarithmic Sobolev inequality for Schrödinger bridges. arXiv preprint arXiv:2301.00083, 2022. - https://doi.org/10.48550/arXiv.2301.00083



Imagette Video

Bookmarks Report an error