Authors : Verri, Alessandra (Author of the conference)
CIRM (Publisher )
Abstract :
Let $\Omega \subset \mathbb{R}^3$ be a sheared waveguide, i.e., $\Omega$ is built by translating a cross-section (an arbitrary bounded connected open set of $\mathbb{R}^2$ ) in a constant direction along an unbounded spatial curve. Consider $-\Delta_{\Omega}^D$ the Dirichlet Laplacian operator in $\Omega$. Under the condition that the tangent vector of the reference curve admits a finite limit at infinity, we find the essential spectrum of $-\Delta_{\Omega}^D$. After that, we state sufficient conditions that give rise to a non-empty discrete spectrum for $-\Delta_{\Omega}^D$. Finally, in case the cross section translates along a broken line in $\mathbb{R}^3$, we prove that the discrete spectrum of $-\Delta_{\Omega}^D$ is finite, furthermore, we show a particular geometry for $\Omega$ which implies that the total multiplicity of the discrete spectrum is equals 1.
Keywords : sheared waveguides; Dirichlet Laplacien; essential spectrum; discrete spectrum
MSC Codes :
47A75
- Eigenvalue problems (linear operators)
47F05
- Partial differential operators [See also 35Pxx, 58Jxx]
49R05
- Variational methods for eigenvalues of operators
Film maker : Hennenfent, Guillaume
Language : English
Available date : 01/02/2024
Conference Date : 18/01/2024
Subseries : Research talks
arXiv category : Spectral Theory
Mathematical Area(s) : Analysis and its Applications ; Mathematical Physics
Format : MP4 (.mp4) - HD
Video Time : 00:29:59
Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
Download : https://videos.cirm-math.fr/2024-01-18_Verri.mp4
|
Event Title : Spectral Analysis for Quantum Hamiltonians / Analyse Spectrale pour des Hamiltoniens Quantiques Event Organizers : Briet, Philippe ; Bruneau, Vincent ; Miranda, Pablo ; Taarabt, Amal Dates : 15/01/2024 - 19/01/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/2985.html
DOI : 10.24350/CIRM.V.20127403
Cite this video as:
Verri, Alessandra (2024). Spectral analysis in sheared waveguides. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20127403
URI : http://dx.doi.org/10.24350/CIRM.V.20127403
|
See Also
Bibliography
- SUAREZ BELLO, Diana Carolina et VERRI, Alessandra A. Spectral analysis in broken sheared waveguides. Mathematical Methods in the Applied Sciences. - https://doi.org/10.1002/mma.9914
- VERRI, Alessandra A. Spectrum of the Dirichlet Laplacian in sheared waveguides. Zeitschrift für angewandte Mathematik und Physik, 2021, vol. 72, p. 1-12. - http://dx.doi.org/10.1007/s00033-020-01444-z