En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Higher Lie theory in positive characteristic

Bookmarks Report an error
Multi angle
Authors : Roca i Lucio, Victor (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Given a nilpotent Lie algebra over a characteristic zero field, one can construct a group in a universal way via the Baker-Campbell-Hausdorff formula. This integration procedure admits generalizations to dg Lie or L∞-algebras, giving in general ∞-groupoid of deformations that it encodes, as by the Lurie-Pridham correspondence, infinitesimal deformation problems are equivalent to dg Lie algebras. The recent work of Brantner-Mathew establishes a correspondence between infinitesimal deformation problems and partition Lie algebras over a positive characteristic field. In this talk, I will explain how to construct an analogue of the integration functor for certain point-set models of (spectral) partition Lie algebras, and how this integration functor can recover the associated deformation problem under some assumptions. Furthermore, I will discuss some applications of these constructions to unstable p-adic homotopy theory.

Keywords : algebraic operads; deformation theory; formal moduli problems; homotopical algebra; Lie theory; p-adic homotopy theory

MSC Codes :
14D15 - Formal methods; deformations, See also {13D10, 14B07, 16S80, 32Gxx}
22E60 - Lie algebras of Lie groups, {For the algebraic theory of Lie algebras, See 17Bxx}
55P62 - Rational homotopy theory
55U10 - Simplicial sets and complexes
14D23 - Stacks and moduli problems
18N40 - Homotopical algebra, Quillen model categories, derivators
18M70 - Algebraic operads, cooperads, and Koszul duality

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 29/05/2024
    Conference Date : 09/05/2024
    Subseries : Research talks
    arXiv category : Algebraic Topology
    Mathematical Area(s) : Algebra ; Lie Theory and Generalizations ; Topology
    Format : MP4 (.mp4) - HD
    Video Time : 01:02:32
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-05-09_Roca_i_Lucio.mp4

Information on the Event

Event Title : Higher Algebra, Geometry, and Topology / Algèbre, Géométrie et Topologie Supérieures
Event Organizers : Campos, Ricardo ; Cirici, Joana ; Dotsenko, Vladimir ; Vallette, Bruno
Dates : 06/05/2024 - 10/05/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/2995.html

Citation Data

DOI : 10.24350/CIRM.V.20174003
Cite this video as: Roca i Lucio, Victor (2024). Higher Lie theory in positive characteristic. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20174003
URI : http://dx.doi.org/10.24350/CIRM.V.20174003

See Also

Bibliography



Imagette Video

Bookmarks Report an error