En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Dirichlet problem for second order elliptic equations in nondivergence form with continuous coefficients

Bookmarks Report an error
Multi angle
Authors : Kim, Seick (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We investigate the Dirichlet problem for a non-divergence form elliptic operator $L=a^{i j}(x) D_{i j}+b^{i}(x) D_{i}-c(x)$ in a bounded domain of $\mathbb{R}^{d}$. Under certain conditions on the coefficients of $L$, we first establish the existence of a unique Green's function in a ball and derive two-sided pointwise estimates for it. Utilizing these results, we demonstrate the equivalence of regular points for $L$ and those for the Laplace operator, characterized via the Wiener test. This equivalence facilitates the unique solvability of the Dirichlet problem with continuous boundary data in regular domains. Furthermore, we construct the Green's function for $L$ in regular domains and establish pointwise bounds for it.

Keywords : Green's function; Wiener test; elliptic equations in non-divergence form

MSC Codes :
35B65 - Smoothness and regularity of solutions of PDE
35J25 - Boundary value problems for second-order elliptic equations
35J08 - Green's functions

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 10/07/2024
    Conference Date : 13/06/2024
    Subseries : Research talks
    arXiv category : Analysis of PDEs
    Mathematical Area(s) : PDE
    Format : MP4 (.mp4) - HD
    Video Time : 00:51:24
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-06-13_Kim.mp4

Information on the Event

Event Title : Harmonic analysis and partial differential equations / Analyse harmonique et équations aux dérivées partielles
Event Organizers : Bernicot, Frédéric ; Martell, José Maria ; Monniaux, Sylvie ; Portal, Pierre
Dates : 10/06/2024 - 14/06/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/2979.html

Citation Data

DOI : 10.24350/CIRM.V.20189603
Cite this video as: Kim, Seick (2024). Dirichlet problem for second order elliptic equations in nondivergence form with continuous coefficients. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20189603
URI : http://dx.doi.org/10.24350/CIRM.V.20189603

See Also

Bibliography

  • DONG, Hongjie, KIM, Dong-ha, et KIM, Seick. The Dirichlet problem for second-order elliptic equations in non-divergence form with continuous coefficients. arXiv preprint arXiv:2402.17948, 2024. - https://doi.org/10.48550/arXiv.2402.17948



Imagette Video

Bookmarks Report an error