En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Barycenters for transport costs

Bookmarks Report an error
Multi angle
Authors : Delon, Julie (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : optimal transport; Wasserstein barycenters

MSC Codes :
49J40 - Variational methods including variational inequalities
49N15 - Duality theory
60A10 - Probabilistic measure theory, {For ergodic theory, See 28Dxx and 60Fxx}
49K21 - Problems involving relations other than differential equations

Additional resources :
https://jdigne.github.io/sigma2024/slides/Delon.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 22/11/2024
    Conference Date : 28/10/2024
    Subseries : Research talks
    arXiv category : Optimization and Control ; Machine Learning
    Mathematical Area(s) : Numerical Analysis & Scientific Computing ; Computer Science ; Control Theory & Optimization
    Format : MP4 (.mp4) - HD
    Video Time : 00:34:32
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-10-28_Delon

Information on the Event

Event Title : SIGMA (Signal, Image, Geometry, Modeling, Approximation) / SIGMA (Signal, Image, Géométrie, Modélisation, Approximation)
Event Organizers : Cohen, Albert ; Digne, Julie ; Fadili, Jalal ; Mula, Olga ; Nouy, Anthony
Dates : 28/10/2024 - 01/11/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/3066.html

Citation Data

DOI : 10.24350/CIRM.V.20257403
Cite this video as: Delon, Julie (2024). Barycenters for transport costs. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20257403
URI : http://dx.doi.org/10.24350/CIRM.V.20257403

See Also

Bibliography

  • DELON, Julie, GOZLAN, Nathael, et SAINT DIZIER, Alexandre. Generalized Wasserstein barycenters between probability measures living on different subspaces. The Annals of Applied Probability, 2023, vol. 33, no 6A, p. 4395-4423. - http:// https://doi.org/10.1214/22-AAP1922

  • AGUEH, Martial et CARLIER, Guillaume. Barycenters in the Wasserstein space. SIAM Journal on Mathematical Analysis, 2011, vol. 43, no 2, p. 904-924. - https://doi.org/10.1137/100805741

  • ÁLVAREZ-ESTEBAN, Pedro C., DEL BARRIO, E., CUESTA-ALBERTOS, J. A., et al. A fixed-point approach to barycenters in Wasserstein space. Journal of Mathematical Analysis and Applications, 2016, vol. 441, no 2, p. 744-762. - https://doi.org/10.1016/j.jmaa.2016.04.045



Imagette Video

Bookmarks Report an error