En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

High-dimensional Bayesian geostatistics ​

Sélection Signaler une erreur
Multi angle
Auteurs : Banerjee, Sudipto (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. I will present a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as ``priors" for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has n floating point operations (flops), where n is the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings.

Mots-Clés : Bayesian modeling; directed acyclic graphs; Gaussian processes; low-rank models; scalable models; spatial stochastic processes

Codes MSC :
62F15 - Bayesian inference
62M30 - Statistics of spatial processes
62P12 - Applications of statistics to environnemental and related topics

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 06/12/2018
    Date de Captation : 29/11/2018
    Sous Collection : Research talks
    Catégorie arXiv : Methodology ; Computation
    Domaine(s) : Probabilités & Statistiques
    Format : MP4 (.mp4) - HD
    Durée : 01:00:45
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2018-11-29_Banerjee.mp4

Informations sur la Rencontre

Nom de la Rencontre : Jean-Morlet chair: Bayesian statistics in the big data era / Chaire Jean-Morlet : Statistiques bayésiennes à l'ère du big data
Organisateurs de la Rencontre : Freyemurth, Jean-Marc ; Marin, Jean-Michel ; Mengersen, Kerrie ; Pommeret, Denys ; Pudlo, Pierre
Dates : 26/11/2018 - 30/11/2018
Année de la rencontre : 2018
URL de la Rencontre : https://www.chairejeanmorlet.com/1912.html

Données de citation

DOI : 10.24350/CIRM.V.19478503
Citer cette vidéo: Banerjee, Sudipto (2018). High-dimensional Bayesian geostatistics ​. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19478503
URI : http://dx.doi.org/10.24350/CIRM.V.19478503

Voir Aussi

Bibliographie



Sélection Signaler une erreur