En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Welch games to Laver Ideals

Sélection Signaler une erreur
Multi angle
Auteurs : Foreman, Matthew (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Kiesler and Tarski characterized weakly compact cardinals as those inaccessible cardinals such that for every $\kappa$-complete subalgebra $\mathcal{B}\subseteq P(\kappa))$ every $\kappa$-complete filter on $\mathcal{B}$ can be extended to a $\kappa$-complete ultrafilter on $\mathcal{B}.$ Welch proposed a variant of Holy-Schlict games where, for a fixed $\gamma$, player I and II take turns, with I playing an increasing sequence of subalgebras $\mathcal{A}_{\mathrm{i}}$ and II playing an increasing sequence of ultrafilters $\mathcal{U}_{\mathrm{i}}$ for $ i<\gamma$. Player II wins if she can continue playing of length $\gamma.$
By Kiesler-Tarski, player II wins the game with $\gamma=\omega$ if and only if $\kappa$ is weakly compact. It is immediate that if $\kappa$ is measurable, then II wins the game of length $2^{\kappa}$. Are these the only cases?
Nielsen and Welch proved that if II has a winning strategy in the game of length $\omega+1$ then there is an inner model with a measurable cardinal. Welch conjectured that if II has a winning strategy in the game of length $\omega+1$ then there is a precipitous ideal on $\kappa$ .
Our first result confirms Welch's conjecture: if II has a winning strategy in the game of length $\omega+1$ then there is a normal, $\kappa$-complete precipitous ideal on $\kappa$ . In fact if $\gamma\leq\kappa$ is regular and II wins the game of length $\gamma$, then there is a normal, $\kappa$-complete ideal on $\kappa$ with a dense tree that is $<-\gamma$-closed.
But is this result vacuous? Our second result is that if you start with a model with sufficient fine structure and a measurable cardinal then there is a forcing extension where:
1. $\kappa$ is inaccessible and there is no $\kappa^{+}$-saturated ideal on $\kappa$,
2. for each regular $\gamma\leq\kappa$, player II has a winning strategy in the game of length $\gamma,$
3. for all regular $\gamma\leq\kappa$ there is a normal fine ideal $\mathcal{I}_{\gamma}$ such that $P(\kappa)/\mathcal{I}\gamma$ has a dense, $<-\gamma$ closed tree.
The proofs of these results use techniques from the proofs of determinacy, lottery forcing, iterated club shooting and new techniques in inner model theory. They leave many problems open and not guaranteed to be difficult.
This is joint work of M Foreman, M. Magidor and M. Zeman.

Mots-Clés : Welch games; dense closed ideals; weakly compact cardinals; fine structure

Codes MSC :
03E35 - Consistency and independence results
03E55 - Large cardinals
03E65 - Other hypotheses and axioms (set theory)

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2370/Slides/Foreman.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 04/10/2021
    Date de Captation : 16/09/2021
    Sous Collection : Research talks
    Catégorie arXiv : Logic
    Domaine(s) : Logique et Fondements
    Format : MP4 (.mp4) - HD
    Durée : 00:53:31
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2021-09-16_Foreman.mp4

Informations sur la Rencontre

Nom de la Rencontre : XVI International Luminy Workshop in Set Theory / XVI Atelier international de théorie des ensembles
Organisateurs de la Rencontre : Fischer, Vera ; Velickovic, Boban ; Viale, Matteo
Dates : 13/09/2021 - 17/09/2021
Année de la rencontre : 2021
URL de la Rencontre : https://conferences.cirm-math.fr/2370.html

Données de citation

DOI : 10.24350/CIRM.V.19809203
Citer cette vidéo: Foreman, Matthew (2021). Welch games to Laver Ideals. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19809203
URI : http://dx.doi.org/10.24350/CIRM.V.19809203

Voir Aussi

Bibliographie

  • Foreman, Matthew, Menachem Magidor, and Martin Zeman. "Games with Filters." arXiv preprint arXiv:2009.04074 (2020). - https://arxiv.org/abs/2009.04074

  • Holy, Peter, and Philipp Schlicht. "A hierarchy of Ramsey-like cardinals." Fundamenta Mathematicae 242 (2018), 49-74 - http://dx.doi.org/10.4064/fm396-9-2017

  • Nielsen, Dan Saattrup, and Philip Welch. "Games and Ramsey-like cardinals." The Journal of Symbolic Logic 84.1 (2019): 408-437. - https://doi.org/10.1017/jsl.2018.75

  • Kanamori A., Magidor M. "The evolution of large cardinal axioms in set theory". In: Müller G.H., Scott D.S. (eds) Higher Set Theory. Lecture Notes in Mathematics, vol 669. (1978) Springer, Berlin, Heidelberg. - http://dx.doi.org/10.1007/BFb0103104



Imagette Video

Sélection Signaler une erreur