En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Optimal revelated utilities and convex pricing kernels:
a forward point of view of convexity propagation

Sélection Signaler une erreur
Multi angle
Auteurs : El Karoui, Nicole (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Concave and convex functions are basic functions in economy and finance. In derivatives market, options pay-offs as Call and Put are in general convex functions of their underlying $((x-K)^{+}, or (K-x)^{+})$ and their Black-Scholes Prices are also convex. This property can be maintain in a random universe, (without reference to finance). Here, we are looking for the pricing point of view. The data is an underlying random field, $\left\{X_{t}(x) \right\}$, non negative with $X_{t}(0)=0$, $X_{t}(+\infty )=\infty$, and a pricing (strictly) convex function $\Phi (0,z)$ whose the right-derivative is denoted $\phi$, given the price today of convex European derivative. The problem is to characterize a convex pricing rule $\left\{\Phi (t,z) \right\}$ in the future, optimal in the sense that $\left\{\Phi (t,X^{t}(x)) \right\}$ is a martingale. Obviously, without additional constraint, the problem has many solutions. So, thanks to convexity assumptions, it is natural to introduce the convex conjugate random field $\Psi (t,y)$. By the Fenchel theory, the Gap function $G_{\Phi }(t,z,y)=\Phi (t,z)+\Psi (t,y)-zy\geq 0$, $= 0$ if $\phi (t,z)=y$.

Put $Y_{t}(\phi (z)):=\Phi _{z}(t,X_{t}(z))$. The problem is to solve a be revealed problem find a par of conjugate convex random fields $(\Phi (t,z), \Psi (t,y))$ such that $\Phi (t,X_{t}(x))$ and $\Psi (t,Y_{t}(y))$ are martingales. The Legendre formula implies that $X_{t}(z)Y_{t}(\phi (z))$ is a martingale. As for revealed utility, the problem at least a solution if and only if their exists an equivalent intrinsic framework, where necessary the processes ‘$\left\{X_{t}(x) \right\},\left\{Y_{t}(y) \right\},\left\{\Phi (t,z) \right\}$' are supermartingales, and $\left\{X_{t}(x)Y_{t}(\phi (x)) \right\}$ is a martingale. The family $\left\{Y_{t}(\phi (x)) \right\}$ is a family of pricing kernel for $X_{t}(x)$. The relation $Y_{t}(\phi (z)):=\Phi _{z}(t,X_{t}(z))$, and the monotony of $X_{t}(z)$ gives the way to obtained $\Phi _{z}(t,z)=Y_{t}(\phi (X_{t}^{-1}(z)))$ by a pathwise procedure. The convexity of the pricing kernel reduced the arbitrage problems. Itô's semimartingale framework is used to illustrate this characterization. The revealed pricing kernel y is solution of a non-linear SPDE. Many properties can be deduced of this pathwise construction.
Joint work Mohamed Mrad.

Codes MSC :

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2390/Slides/Nicole_El_Karoui.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 27/09/2023
    Date de Captation : 07/09/2023
    Sous Collection : Research talks
    Catégorie arXiv : Probability ; Statistics ; Quantitative Finance
    Domaine(s) : Probabilités & Statistiques
    Format : MP4 (.mp4) - HD
    Durée : 00:43:51
    Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-09-07_Karoui.mp4

Informations sur la Rencontre

Nom de la Rencontre : A Random Walk in the Land of Stochastic Analysis and Numerical Probability / Une marche aléatoire dans l'analyse stochastique et les probabilités numériques
Organisateurs de la Rencontre : Champagnat, Nicolas ; Pagès, Gilles ; Tanré, Etienne ; Tomašević, Milica
Dates : 04/09/2023 - 08/09/2023
Année de la rencontre : 2023
URL de la Rencontre : https://conferences.cirm-math.fr/2390.html

Données de citation

DOI : 10.24350/CIRM.V.20088503
Citer cette vidéo: El Karoui, Nicole (2023). Optimal revelated utilities and convex pricing kernels:
a forward point of view of convexity propagation. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20088503
URI : http://dx.doi.org/10.24350/CIRM.V.20088503

Voir Aussi

Bibliographie



Imagette Video

Sélection Signaler une erreur