Authors : Bühlmann, Peter (Author of the conference)
CIRM (Publisher )
Abstract :
We present a novel methodology for causal inference based on an invariance principle. It exploits the advantage of heterogeneity in larger datasets, arising from different experimental conditions (i.e. an aspect of "Big Data"). Despite fundamental identifiability issues, the method comes with statistical confidence statements leading to more reliable results than alternative procedures based on graphical modeling. We also discuss applications in biology, in particular for large-scale gene knock-down experiments in yeast where computational and statistical methods have an interesting potential for prediction and prioritization of new experimental interventions.
MSC Codes :
62Fxx
- Parametric inference
62H12
- Multivariate estimation
62Pxx
- Applications of statistics
Film maker : Hennenfent, Guillaume
Language : English
Available date : 18/02/16
Conference Date : 03/02/2016
Subseries : Research talks
arXiv category : Statistics Theory
Mathematical Area(s) : Probability & Statistics
Format : MP4 (.mp4) - HD
Video Time : 01:02:17
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2016-02-03_Buhlmann.mp4
|
Event Title : Thematic month on statistics - Week 1: Statistical learning / Mois thématique sur les statistiques - Semaine 1 : apprentissage Event Organizers : Ghattas, Badih ; Ralaivola, Liva Dates : 01/02/16 - 05/02/16
Event Year : 2016
Event URL : http://conferences.cirm-math.fr/1615.html
DOI : 10.24350/CIRM.V.18918403
Cite this video as:
Bühlmann, Peter (2016). The power of heterogeneous large-scale data for high-dimensional causal inference. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18918403
URI : http://dx.doi.org/10.24350/CIRM.V.18918403
|
Bibliography
- [1] Hauser, A., Bühlmann, P. (2015). Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs. Journal of the Royal Statistical Society, Series B, 77(1), 291-318 - http://dx.doi.org/10.1111/rssb.12071
- [2] Hauser, A., & Buhlmann, P. (2012). Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. Journal of Machine Learning Research, 13(1), 2409-2464 - http://dl.acm.org/citation.cfm?id=2503308.2503320
- [3] Kalisch, M., Machier, M., Colombo, D., Maathuis, M.H., & Buhlmann, P. (2012). Causal inference using graphical models with the R package pcalg. Journal of Statistical Software, 47(11), 1-26 - http://dx.doi.org/10.18637/jss.v047.i11
- [4] Maathuis, M.H., Colombo, D., Kalisch, M. & Buhlmann, P (2010). Predicting causal effects in large-scale systems from observational data. Nature Methods, 7(4), 247-248 - http://dx.doi.org/10.1038/nmeth0410-247
- [5] Maathuis, M.H., Kalisch, M., & Buhlmann, P. (2009). Estimating high-dimensional intervention effects from observational data. Annals of Statistics, 37(6A), 3133-3164 - http://dx.doi.org/10.1214/09-aos685
- [6] Meinshausen, N., Hauser. A. Mooij, J., Peters, J., Versteeg, P. & Bühlmann, R. (2015). Causal inference from gene perturbation experiments: methods, software and validation. Preprint. -
- [7] Peters, J., Bühlmann, R, & Meinshausen, N. (2015). Causal inference using invariant prediction: identification and confidence intervals. - http://arxiv.org/abs/1501.01332v3
- [8] Stekhoven, D.J., Morass, I., Sveinbjornsson, G., Hennig, L, Maathuis, M.H., & Buhlmann, P (2012). Causal stability ranking. Bioinformatics, 28(21), 2819-2823 - http://dx.doi.org/10.1093/bioinformatics/bts523