En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

What effective tensors, and effective tensor functions, can one obtain through lamination?

Sélection Signaler une erreur
Multi angle
Auteurs : Milton, Graeme (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Lamination of two materials with tensors $L_{1}$ and $L_{2}$ generates an effective tensor $L_{*}$. For certain fractional linear transformations $W(L)$, dependent on the property under consideration (conduction, elasticity, thermoelasticity, piezoelectricity, poroelasticity, etc.) and on the direction of lamination, $W\left(L_{*}\right)$ is just a weighted average of $W\left(L_{1}\right)$ and $W\left(L_{2}\right)$, weighted by the volume fractions occupied by the two materials, and this gives $L_{*}$ in terms of $L_{1}$ and $L_{2}$. Given an original set of materials one may laminate them together iteratively on larger and larger widely separated length scales, at each stage possibly laminating together two materials both of which are already laminates. Ultimately, one gets a hierarchical laminate with the lamination process represented by a tree with the leaves corresponding to the original set of materials, and with the volume fractions and direction of lamination specified at each vertex. It is amazing to see the range of effective tensors $L_{*}$ one can obtain, or effective tensor functions $L_{*}\left(L_{1}, L_{2}\right)$ one can obtain if, say, there are just two original materials. These functions $L_{*}\left(L_{1}, L_{2}\right)$ are closely related to Herglotz-Nevanlinna-Stieltjes functions. Here we will survey many results, some old, some surprising, on what effective tensors, and effective tensor functions, can be obtained lamination. In some cases the effective tensor or effective tensor function of any microgeometry can be mimicked by one of a hierarchical laminate. The question of what can be achieved is closely tied to the classic problem of rank-1 convexification and whether and when it equals quasiconvexification.

Keywords : composites; homogenization; quasiconvexity; laminates; effective properties

Codes MSC :
35B27 - Homogenization; equations in media with periodic structure [See also 74Qxx, 76M50]
74Q20 - Bounds on effective properties

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 20/06/2022
    Date de captation : 24/05/2022
    Sous collection : Research talks
    arXiv category : Analysis of PDEs ; Mathematical Physics ; Algebraic Geometry
    Domaine : Analysis and its Applications ; PDE ; Mathematical Physics ; Mathematics in Science & Technology
    Format : MP4 (.mp4) - HD
    Durée : 00:50:32
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-05-24_Milton.mp4

Informations sur la Rencontre

Nom de la rencontre : Herglotz-Nevanlinna Functions and their Applications to Dispersive Systems and Composite Materials / Fonctions de Herglotz-Nevanlinna et leurs applications aux systèmes dispersifs et aux matériaux composites
Organisateurs de la rencontre : Bonnet-Ben Dhia, Anne-Sophie ; Cassier, Maxence ; Gralak, Boris ; Luger, Annemarie ; Milton, Graeme
Dates : 23/05/2022 - 27/05/2022
Année de la rencontre : 2022
URL Congrès : https://conferences.cirm-math.fr/2225.html

Données de citation

DOI : 10.24350/CIRM.V.19920503
Citer cette vidéo: Milton, Graeme (2022). What effective tensors, and effective tensor functions, can one obtain through lamination?. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19920503
URI : http://dx.doi.org/10.24350/CIRM.V.19920503

Voir aussi

Bibliographie



Imagette Video

Sélection Signaler une erreur