En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Numerical methods and uncertainty quantification for kinetic equations - lecture 1

Sélection Signaler une erreur
Multi angle
Auteurs : Dimarco, Giacomo (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : In this course, we will consider the development and the analysis of numerical methods for kinetic partial differential equations. Kinetic equations represent a way of describing the time evolution of a system consisting of a large number of particles. Due to the high number of dimensions and their intrinsic physical properties, the construction of numerical methods represents a challenge and requires a careful balance between accuracy and computational complexity. In the first part, we will review the basic numerical techniques for dealing with such equations, including the case of semi-Lagrangian methods, discrete-velocity models and spectral methods. In the second part, we give an overview of the current state of the art of numerical methods for kinetic equations. This covers the derivation of fast algorithms, the notion of asymptotic-preserving methods and the construction of hybrid schemes. Since, in all models a degree of uncertainty is implicitly embedded which can be due to the lack of knowledge about the microscopic interaction details, incomplete informations on the initial state or at the boundaries, a last part will be dedicated to an overview of numerical methods to deal with the quantification of the uncertainties in kinetic equations. Applications of the models and the numerical methods to different fields ranging from physics to biology and social sciences will be discussed as well.

Keywords : numerical methods for kinetic equations; uncertainty quantification; Monte Carlo methods; Asymptotic preserving schemes

Codes MSC :
65Mxx - Numerical methods for IVP of PDE
70-XX - Mechanics of particles and systems
65ZXX - Applications to physics

Ressources complémentaires :
http://smai.emath.fr/cemracs/cemracs22/slides/slides_dimarco_lecture1_CEMRACS_22.pdf
http://smai.emath.fr/cemracs/cemracs22/slides/slides_dimarco_lecture2_CEMRACS_22.pdf
http://smai.emath.fr/cemracs/cemracs22/slides/slides_dimarco_lecture3_CEMRACS_22.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 01/08/2022
    Date de captation : 19/07/2022
    Sous collection : Research School
    arXiv category : Numerical Analysis ; Quantitative Biology ; Optimization and Control
    Domaine : Numerical Analysis & Scientific Computing ; Control Theory & Optimization ; Mathematics in Science & Technology
    Format : MP4 (.mp4) - HD
    Durée : 02:01:02
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-07-19_Dimarco_1.mp4

Informations sur la Rencontre

Nom de la rencontre : CEMRACS: Transport in Physics, Biology and Urban Traffic / CEMRACS: Transport en physique, biologie et traffic urbain
Organisateurs de la rencontre : Franck, Emmanuel ; Hivert, Helene ; Latu, Guillaume ; Leman, Hélène ; Maury, Bertrand ; Mehrenberger, Michel ; Navoret, Laurent
Dates : 18/07/2022 - 22/07/2022
Année de la rencontre : 2022
URL Congrès : http://smai.emath.fr/cemracs/cemracs22/s...

Données de citation

DOI : 10.24350/CIRM.V.19940003
Citer cette vidéo: Dimarco, Giacomo (2022). Numerical methods and uncertainty quantification for kinetic equations - lecture 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19940003
URI : http://dx.doi.org/10.24350/CIRM.V.19940003

Voir aussi

Bibliographie

  • DIMARCO, Giacomo et PARESCHI, Lorenzo. Numerical methods for kinetic equations. Acta Numerica, 2014, vol. 23, p. 369-520. - https://doi.org/10.1017/S0962492914000063

  • DIMARCO, Giacomo, LIU, Liu, PARESCHI, Lorenzo, et al. Multi-fidelity methods for uncertainty propagation in kinetic equations. arXiv preprint arXiv:2112.00932, 2021. - https://doi.org/10.48550/arXiv.2112.00932

  • ALBI, Giacomo, BERTAGLIA, Giulia, BOSCHERI, Walter, et al. Kinetic modelling of epidemic dynamics: social contacts, control with uncertain data, and multiscale spatial dynamics.Predicting Pandemics in a Globally Connected World, Vol. 1, Birkhauser-Springer Series: Modeling and Simulation in Science,
    Engineering and Technology, 2022. - https://doi.org/10.48550/arXiv.2110.00293



Imagette Video

Sélection Signaler une erreur