En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Metamodels for uncertainty quantification and reliability analysis

Sélection Signaler une erreur
Multi angle
Auteurs : Marelli, Stefano (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Uncertainty quantification (UQ) in the context of engineering applications aims aims at quantifying the effects of uncertainty in the input parameters of complex models on their output responses. Due to the increased availability of computational power and advanced modelling techniques, current simulation tools can provide unprecedented insight in the behaviour of complex systems. However, the associated computational costs have also increased significantly, often hindering the applicability of standard UQ techniques based on Monte-Carlo sampling. To overcome this limitation, metamodels (also referred to as surrogate models) have become a staple tool in the Engineering UQ community. This lecture will introduce a general framework for dealing with uncertainty in the presence of expensive computational models, in particular for reliability analysis (also known as rare event estimation). Reliability analysis focuses on the tail behaviour of a stochastic model response, so as to compute the probability of exceedance of a given performance measure, that would result in a critical failure of the system under study. Classical approximation-based techniques, as well as their modern metamodel-based counter-parts will be introduced.

Codes MSC :
62N05 - Reliability and life testing (survival analysis)
62P30 - Applications of statistics in engineering and industry
65C05 - Monte Carlo methods
90B25 - Reliability, availability, maintenance, inspection, etc. (optimization)

Ressources complémentaires :
http://smai.emath.fr/cemracs/cemracs17/Slides/marelli.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 01/08/17
    Date de captation : 21/07/17
    Sous collection : Research School
    arXiv category : Statistics Theory ; Numerical Analysis ; Computer Science
    Domaine : Numerical Analysis & Scientific Computing ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 01:07:59
    Audience : Researchers ; Graduate Students
    Download : https://videos.cirm-math.fr/2017-07-21_Marelli.mp4

Informations sur la Rencontre

Nom de la rencontre : CEMRACS - Summer school: Numerical methods for stochastic models: control, uncertainty quantification, mean-field / CEMRACS - École d'été : Méthodes numériques pour équations stochastiques : contrôle, incertitude, champ moyen
Organisateurs de la rencontre : Bouchard, Bruno ; Chassagneux, Jean-François ; Delarue, François ; Gobet, Emmanuel ; Lelong, Jérôme
Dates : 17/07/17 - 25/08/17
Année de la rencontre : 2017
URL Congrès : http://conferences.cirm-math.fr/1556.html

Données de citation

DOI : 10.24350/CIRM.V.19201603
Citer cette vidéo: Marelli, Stefano (2017). Metamodels for uncertainty quantification and reliability analysis. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19201603
URI : http://dx.doi.org/10.24350/CIRM.V.19201603

Voir aussi

Bibliographie



Sélection Signaler une erreur