En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Traffic flow models with non-local flux and extensions to networks

Sélection Signaler une erreur
Multi angle
Auteurs : Göttlich, Simone (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : We present a Godunov type numerical scheme for a class of scalar conservation laws with nonlocal flux arising for example in traffic flow modeling. The scheme delivers more accurate solutions than the widely used Lax-Friedrichs type scheme and also allows to show well-posedness of the model. In a second step, we consider the extension of the non-local traffic flow model to road networks by defining appropriate conditions at junctions. Based on the proposed numerical scheme we show some properties of the approximate solution and provide several numerical examples.

Keywords : non-local scalar conservation laws; Godunov scheme

Codes MSC :
35L65 - Conservation laws
65M12 - Stability and convergence of numerical methods (IVP of PDE)
90B20 - Traffic problems

Ressources complémentaires :
https://crowds2019.sciencesconf.org/data/pages/Crowds_book.pdf
https://www.cirm-math.fr/RepOrga/1927/Slides/Goettlich.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 25/06/2019
    Date de captation : 06/06/2019
    Sous collection : Research talks
    arXiv category : Numerical Analysis ; Analysis of PDEs
    Domaine : Numerical Analysis & Scientific Computing ; PDE
    Format : MP4 (.mp4) - HD
    Durée : 00:43:59
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-06-06_Gottlich.mp4

Informations sur la Rencontre

Nom de la rencontre : Foules : modèles et commande / Crowds: Models and Control
Organisateurs de la rencontre : Morancey, Morgan ; Piccoli, Benedetto ; Rossi, Francesco ; Wolfram, Marie-Thérèse
Dates : 03/06/2019 - 07/06/2019
Année de la rencontre : 2019
URL Congrès : https://conferences.cirm-math.fr/1927.html

Données de citation

DOI : 10.24350/CIRM.V.19534703
Citer cette vidéo: Göttlich, Simone (2019). Traffic flow models with non-local flux and extensions to networks. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19534703
URI : http://dx.doi.org/10.24350/CIRM.V.19534703

Voir aussi

Bibliographie

  • AGGARWAL, Aekta, COLOMBO, Rinaldo M., et GOATIN, Paola. Nonlocal systems of conservation laws in several space dimensions. SIAM Journal on Numerical Analysis, 2015, vol. 53, no 2, p. 963-983. - https://doi.org/10.1137/140975255

  • COLOMBO, Maria, CRIPPA, Gianluca, et SPINOLO, Laura V. Blow-up of the total variation in the local limit of a nonlocal traffic model. arXiv preprint arXiv:1808.03529, 2018. - https://arxiv.org/abs/1808.03529#

  • CHIARELLO, Felisia Angela, FRIEDRICH, J., GOATIN, Paola, et al. A non-local traffic flow model for 1-to-1 junctions. 2019. - https://hal.inria.fr/hal-02142345

  • CHIARELLO, Felisia Angela et GOATIN, Paola. Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel. ESAIM: Mathematical Modelling and Numerical Analysis, 2018, vol. 52, no 1, p. 163-180. - https://doi.org/10.1051/m2an/2017066

  • COCLITE, Giuseppe Maria, GARAVELLO, Mauro, et PICCOLI, Benedetto. Traffic flow on a road network. SIAM journal on mathematical analysis, 2005, vol. 36, no 6, p. 1862-1886. - https://doi.org/10.1137/S0036141004402683

  • FRIEDRICH, Jan, KOLB, Oliver, et GÖTTLICH, Simone. A Godunov type scheme for a class of LWR traffic flow models with non-local flux. arXiv preprint arXiv:1802.07484, 2018. - https://arxiv.org/abs/1802.07484

  • KARLSEN, Kenneth Hvistendahl et TOWERS, John D. Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition. Journal of Hyperbolic Differential Equations, 2017, vol. 14, no 04, p. 671-701. - https://doi.org/10.1142/S0219891617500229



Sélection Signaler une erreur