En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Twisted Kac-Moody groups over the integers

Sélection Signaler une erreur
Multi angle
Auteurs : Lourenço, João (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : In geometric representation theory, one is interested in studying the geometry of affine Grassmannians of quasi-split simply-connected reductive groups. In this endeavor, one of the main techniques, introduced by Faltings in the split case, consists in constructing natural realisations of these ind-schemes over the integers. In the twisted case, this was done by Pappas and Rapoport in the tamely ramified case, i.e. over $\mathbb{Z}[1/e]$, where $e = 2$ or $3$ is the order of the automorphism group of the split form we are dealing with. We explain how to extend the parahoric group scheme that appeared in work of Pappas, Rapoport, Tits and Zhu to the polynomial ring $\mathbb{Z}[t]$ with integer coefficients and additionally how the group scheme obtained in char. $e$ can be regarded as a parahoric model of a basic exotic pseudo-reductive group. Then we study the geometry of the affine Grassmannian and also its global deformation à la Beilinson-Drinfeld, recovering all the known results in the literature away from $e = 0$. This also has some pertinence to the study of local models of Shimura varieties in wildly ramified cases.

Keywords : Kac-Moody groups; Hecke algebras

Codes MSC :
20C08 - Hecke algebras and their representations
20G44 - Kac-Moody groups

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 20/09/2019
    Date de captation : 30/08/2019
    Sous collection : Research talks
    arXiv category : Number Theory ; Algebraic Geometry ; Group Theory
    Domaine : Number Theory ; Algebraic & Complex Geometry
    Format : MP4 (.mp4) - HD
    Durée : 00:54:24
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-08-30_Lourenço.mp4

Informations sur la Rencontre

Nom de la rencontre : Buildings and Affine Grassmannians / Immeubles et grassmanniennes affines
Organisateurs de la rencontre : Fauquant-Millet, Florence ; Fedorov, Roman ; Gille, Philippe ; Loisel, Benoît ; Ressayre, Nicolas
Dates : 26/08/2019 - 06/09/2019
Année de la rencontre : 2019
URL Congrès : https://conferences.cirm-math.fr/2067.html

Données de citation

DOI : 10.24350/CIRM.V.19559403
Citer cette vidéo: Lourenço, João (2019). Twisted Kac-Moody groups over the integers. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19559403
URI : http://dx.doi.org/10.24350/CIRM.V.19559403

Voir aussi

Bibliographie



Sélection Signaler une erreur