m

F Nous contacter


0
     
Multi angle

H 1 Existence and stability of partially congested fronts

Auteurs : Perrin, Charlotte (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : In this talk, I will present a recent study on traveling waves solutions to a 1D biphasic Navier-Stokes system coupling compressible and incompressible phases. With this original fluid equations, we intend to model congestion (or saturation) phenomena in heterogeneous flows (mixtures, collective motion, etc.). I will first exhibit explicit partially congested propagation fronts and show that these solutions can be approached by profiles which are solutions to a singular compressible Navier-Stokes system. The last part of the talk will be dedicated to the analysis of the stability of the approximate profiles. This is a joint work with Anne-Laure Dalibard.

    Keywords : compressible Navier-Stokes equations; singular limit; free boundary problem

    Codes MSC :
    35L67 - Shocks and singularities, See also {58C27, 76L05}
    35Q35 - PDEs in connection with fluid mechanics

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 14/10/2019
      Date de captation : 26/09/2019
      Collection : Research talks ; Partial Differential Equations
      Format : MP4
      Durée : 00:44:47
      Domaine : PDE
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : https://videos.cirm-math.fr/2019-09-26_Perrin.mp4

    Informations sur la rencontre

    Nom de la rencontre : Inhomogeneous Flows: Asymptotic Models and Interfaces Evolution / Fluides inhomogènes : modèles asymptotiques et évolution d'interfaces
    Organisateurs de la rencontre : Charve, Frédéric ; Danchin, Raphaël ; Haspot, Boris ; Monniaux, Sylvie
    Dates : 23/09/2019 - 27/09/2019
    Année de la rencontre : 2019
    URL Congrès : https://conferences.cirm-math.fr/1919.html

    Citation Data

    DOI : 10.24350/CIRM.V.19563003
    Cite this video as: Perrin, Charlotte (2019). Existence and stability of partially congested fronts. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19563003
    URI : http://dx.doi.org/10.24350/CIRM.V.19563003


    Voir aussi

    Bibliographie

    1. DALIBARD, Anne-Laure et PERRIN, Charlotte. Existence and stability of partially congested propagation fronts in a one-dimensional Navier-Stokes model. arXiv preprint arXiv:1902.02982, 2019. - https://arxiv.org/abs/1902.02982

Z