En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Selected results in real harmonic analysis in the rational Dunkl setting

Sélection Signaler une erreur
Virtualconference
Auteurs : Dziubański, Jacek (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : The goal of the talk is to present selected results in real harmonic analysis in the rational Dunkl setting. We shall start by deriving estimates for the generalized translations$$\tau_{\mathbf{x}} f(-\mathbf{y})=c_{k}^{-1} \int_{\mathbb{R}^{N}} E(\mathbf{x}, i \xi) E(\mathbf{y},-i \xi) \mathcal{F} f(\xi) d w(\xi)$$of certain radial and non-radial functions $f$ on $\mathbb{R}^{N}$, including estimates for the integral kernel of the heat Dunkl semigroup. Here $d w(\mathbf{x})=$ $\prod_{\alpha \in R}|\langle\alpha, \mathbf{x}\rangle|^{k(\alpha)} d \mathbf{x}$ denotes the associated measure, $E(\mathbf{x}, \mathbf{y})$ is the Dunkl kernel, and $\mathcal{F} f(\xi)=c_{k}^{-1} \int_{\mathbb{R}^{N}} f(\mathbf{x}) E(-i \xi, \mathbf{x}) f(\mathbf{x}) d w(\mathbf{x})$ is the Dunkl transform. The obtained estimates will be given by means of the distance $d(\mathbf{x}, \mathbf{y})$ of the orbit of $\mathbf{x}$ to the orbit of $\mathbf{y}$ under the action of the reflection group $G$, that is,$$d(\mathbf{x}, \mathbf{y})=\min _{\sigma \in G}\|\sigma(\mathbf{x})-\mathbf{y}\|$$the Euclidean distance $\|\mathbf{x}-\mathbf{y}\|$, and $d w$-volumes of the Euclidean balls and they will be in the spirit of estimates needed in real harmonic analysis on spaces of homogeneous type.Then, if time permits, we shall discuss selected results, parallel to classical ones, which are proved by utilizing the obtained estimates for the generalized translation. In particular, we will be interested in:- boundedness of maximal functions on various function spaces,- characterizations of the real Hardy space $H^{1}$ in the Dunkl setting- boundedness of the Dunkl transform multiplier operators,- boundedness of singular integral operators,- upper and lower bounds for Littlewood-Paley square functions. The results are joint works with Jean-Philippe Anker and Agnieszka Hejna.

Codes MSC :
42B20 - Singular and oscillatory integrals, several variables
42B25 - Maximal functions, Littlewood-Paley theory
47B38 - Operators on function spaces (general)
47G10 - Integral operators, See also {45P05}

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2404/Slides/Luminy_Jacek_Dziubanski.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 02/12/2021
    Date de captation : 19/10/2021
    Sous collection : Research talks
    arXiv category : Functional Analysis
    Domaine : Analysis and its Applications
    Format : MP4 (.mp4) - HD
    Durée : 00:55:35
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-10-19_Dziubanski.mp4

Informations sur la Rencontre

Nom de la rencontre : Modern Analysis Related to Root Systems with Applications / Analyse moderne liée aux systèmes de racines avec applications
Organisateurs de la rencontre : Anker, Jean-Philippe ; Graczyk, Piotr ; Rösler, Margit ; Sawyer, Patrice
Dates : 18/10/2021 - 22/10/2021
Année de la rencontre : 2021
URL Congrès : https://conferences.cirm-math.fr/2404.html

Données de citation

DOI : 10.24350/CIRM.V.19821703
Citer cette vidéo: Dziubański, Jacek (2021). Selected results in real harmonic analysis in the rational Dunkl setting. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19821703
URI : http://dx.doi.org/10.24350/CIRM.V.19821703

Voir aussi

Bibliographie



Sélection Signaler une erreur