En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Global smoothings of toroidal crossing varieties

Sélection Signaler une erreur
Multi angle
Auteurs : Ruddat, Helge (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : I am going to define toroidal crossing singularities and toroidal crossing varieties and explain how to produce them in large quantities by subdividing lattice polytopes. I will then explain the statement of a global smoothing theorem proved jointly with Felten and Filip. The theorem follows the tradition of well-known theorems by Friedman, Kawamata-Namikawa and Gross-Siebert. In order to apply a variant of the theorem to construct (conjecturally all) projective Fano manifolds with non-empty anticanonical divisor, Corti and Petracci discovered the necessity to allow for particular singular log structures that are known by the inspiring name 'admissible'. I will explain the beautiful classical geometric curve-in-surface geometry that underlies this notion and hint at why we believe that we can feed these singular log structures into the smoothing theorem in order to produce all 98 Fano threefolds with very ample anticanonical class by a single method.

Keywords : log geometry; Fano; Calabi-Yau; mirror symmetry

Codes MSC :
13D10 - Deformations and infinitesimal methods, See also {14B12, 14D15, 16S80, 32Gxx}
14D15 - Formal methods; deformations, See also {13D10, 14B07, 16S80, 32Gxx}
14J32 - Calabi-Yau manifolds
14J45 - Fano varieties
32G05 - Deformations of complex structures
32S30 - Deformations of singularities; vanishing cycles

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 10/12/2021
    Date de captation : 23/11/2021
    Sous collection : Research talks
    arXiv category : Algebraic Geometry ; Applications
    Domaine : Algebraic & Complex Geometry ; Mathematical Physics
    Format : MP4 (.mp4) - HD
    Durée : 00:57:30
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-11-23_Ruddat.mp4

Informations sur la Rencontre

Nom de la rencontre : Jean-Morlet Chair 2021 - Conference: Faces of Singularity Theory / Chaire Jean-Morlet 2021 - Conférence : Visages de la théorie des singularités
Organisateurs de la rencontre : Fernandez de Bobadilla, Javier ; Pichon, Anne ; Mann, Etienne
Dates : 22/11/2021 - 26/11/2021
Année de la rencontre : 2021
URL Congrès : https://www.chairejeanmorlet.com/2571.html

Données de citation

DOI : 10.24350/CIRM.V.19847003
Citer cette vidéo: Ruddat, Helge (2021). Global smoothings of toroidal crossing varieties. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19847003
URI : http://dx.doi.org/10.24350/CIRM.V.19847003

Voir aussi

Bibliographie

  • FELTEN, Simon, FILIP, Matej, et RUDDAT, Helge. Smoothing toroidal crossing spaces. In : Forum of Mathematics, Pi. Cambridge University Press, 2021. - https://doi.org/10.1017/fmp.2021.8



Sélection Signaler une erreur