En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Modular curves and finite groups: building connections via computation

Sélection Signaler une erreur
Multi angle
Auteurs : Roe, David (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : The study of rational points on modular curves has a long history in number theory. Mazur's 1970s papers that describe the possible torsion subgroups and isogeny degrees for rational elliptic curves rest on a computation of the rational points on $X_{0}(N)$ and $X_{1}(N)$, and a large body of work since then continues this tradition.

Modular curves are parameterized by open subgroups $H$ of $\mathrm{GL}_{2}(\hat{\mathbb{Z}})$, and correspondingly parameterize elliptic curves $E$ whose adelic Galois representation $\displaystyle \lim_{ \leftarrow }E[n]$ is contained in $H$. For general $H$, the story of when $X_{H}$ has non-cuspidal rational or low degree points (and thus when there exist elliptic curves with the corresponding level structure) becomes quite complicated, and one of the best approaches we have for understanding it is large-scale computation.

I will describe a new database of modular curves, including rational points, explicit models, and maps between models, along with some of the mathematical challenges faced along the way. The close connection between modular curves and finite groups also arises in other areas of number theory and arithmetic geometry. Most well known are Galois groups associated to field extensions, but one attaches automorphism groups to algebraic varieties and Sato-Tate groups to motives. Building on existing tables of groups, we have added a new finite groups section to the L-functions and modular forms database, which we hope will prove useful both to number theorists and to others who are using and studying finite groups.

Codes MSC :
11G18 - Arithmetic aspects of modular and Shimura varieties
14G35 - Modular and Shimura varieties

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2805/Slides/2023_03_02.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 13/03/2023
    Date de captation : 02/03/2023
    Sous collection : Research talks
    arXiv category : Number Theory ; Group Theory
    Domaine : Number Theory
    Format : MP4 (.mp4) - HD
    Durée : 00:25:13
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-03-02_Roe.mp4

Informations sur la Rencontre

Nom de la rencontre : COUNT - Computations and their Uses in Number Theory / Les calculs et leurs utilisations en théorie des nombres
Organisateurs de la rencontre : Anni, Samuele ; Allombert, Bill ; Balakrishnan, Jennifer ; Bruin, Peter ; Kilicer, Pinar ; Streng, Marco
Dates : 27/02/2023 - 03/03/2023
Année de la rencontre : 2023
URL Congrès : https://conferences.cirm-math.fr/2805.html

Données de citation

DOI : 10.24350/CIRM.V.20007203
Citer cette vidéo: Roe, David (2023). Modular curves and finite groups: building connections via computation. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20007203
URI : http://dx.doi.org/10.24350/CIRM.V.20007203

Voir aussi

Bibliographie



Imagette Video

Sélection Signaler une erreur