En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Project red: $\mathscr{R}$-sectorial Operators and Maximal Regularity

Sélection Signaler une erreur
Multi angle
Auteurs : Klioba, Katharina (Coordinateur) ; Seifert, Christian (Coordinateur) ; Trostorff, Sascha (Coordinateur) ; Carvalho, Francisco (Auteur de la Conférence) ; Ruff, Maximilian (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : In the ISem, we have encountered sectorial operators $A$ on a Hilbert space $H$. In Lecture 6 we have defined the exponential $\mathrm{e}^{-t A}$ for $t>0$ if the sectoriality angle of $A$ is smaller than $\frac{\pi}{2}$, the so-defined family $\left(\mathrm{e}^{-t A}\right)_{t>0}$ is called the semigroup associated with $A$. In Proposition 6.6 it was shown that the semigroup yields the solution to the abstract Cauchy problem$$\begin{aligned}\partial_{t} u(t)+A u(t) & =0, \quad(t>0) \\u(0+) & =u_{0}\end{aligned}$$by setting $u(t):=\mathrm{e}^{-t A} u_{0}$. In the same way, one can solve the equation$$\begin{align*}\partial_{t} u(t)+A u(t) & =f(t), \quad(t>0) \tag{2.1}\\u(0+) & =0\end{align*}$$by computing the convolution of $\mathrm{e}^{-t A}$ with $f$; that is,$$u(t):=\int_{0}^{t}e^{-(t-s)A}f(s)ds.$$One can now show that sectoriality of $A$ yields the maximal $L_{2}$-regularity of (2.1); that is, if $f\in L_{2}(0,\infty ;H)$ then the sodefined solution $u$ satisfies $u\in H^{1}(0,\infty ;H)$ or equivalently (due to (2.1)) $Au\in L_{2}(0,\infty ;H)$. It is the main object of this project to generalise this result to operators on Banach spaces $X$.
As we will see, sectoriality is not enough to ensure maximal regularity of (2.1). In fact, some stronger property is needed, namely $\mathscr{R}$-sectoriality, which in the Hilbert space case is equivalent to sectoriality. Moreover, the goal to prove such a result for all Banach spaces turns out to be too ambitious, so we will restrict our attention to so-called UMD spaces (sometimes also called $\mathscr{HT}$-spaces to reflect their relation to the Hilbert transform). This class of Banach spaces turns out to be suited for the application of techniques from Fourier analysis, which will be one of the main tools to prove our goal, which can be formulated as:

Maximal regularity of (2.1) in a UMD space is equivalent to $\mathscr{R}$-sectoriality of $A$.

The main source for this project will be [1], where our main result can be found in Theorem 4.4. Moreover, we will have a look at elliptic operators in divergence form, now on $L_{p}(\mathbb{R^{n}})$ and not on $L_{2}(\mathbb{R^{n}})$, and study the $\mathscr{R}$-sectoriality of those operators. If time permits, we can continue the study of elliptic operators, now on half-spaces and on domains.

Keywords : maximal regularity; $\mathscr{R}$-boundedness; UMD spaces

Codes MSC :
35K90 - Abstract parabolic evolution equations
42B15 - Multipliers
46N20 - Applications to differential and integral equations

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 19/07/2024
    Date de captation : 17/06/2024
    Sous collection : Research School
    arXiv category : Analysis of PDEs ; Mathematical Physics
    Domaine : Analysis and its Applications
    Format : MP4 (.mp4) - HD
    Durée : 00:55:09
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-06-17_projet_red.mp4

Informations sur la Rencontre

Nom de la rencontre : Harmonic analysis techniques for elliptic operators / Techniques d'analyse harmonique pour des opérateurs elliptiques
Organisateurs de la rencontre : Egert, Moritz ; Haller, Robert ; Monniaux, Sylvie ; Tolksdorf, Patrick
Dates : 17/06/2024 - 21/06/2024
Année de la rencontre : 2024
URL Congrès : https://conferences.cirm-math.fr/2972.html

Données de citation

DOI : 10.24350/CIRM.V.20191003
Citer cette vidéo: Klioba, Katharina ;Seifert, Christian ;Trostorff, Sascha ;Carvalho, Francisco ;Ruff, Maximilian (2024). Project red: $\mathscr{R}$-sectorial Operators and Maximal Regularity. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20191003
URI : http://dx.doi.org/10.24350/CIRM.V.20191003

Voir aussi

Bibliographie

  • DENK, Robert, HIEBER, Matthias, et PRÜSS, Jan. $\mathcal {R} $-boundedness, Fourier multipliers and problems of elliptic and parabolic type. American Mathematical Soc., 2003. - https://doi.org/10.1090/memo/0788



Imagette Video

Sélection Signaler une erreur