Auteurs : Klioba, Katharina (Coordinateur) ;
Seifert, Christian (Coordinateur) ;
Trostorff, Sascha (Coordinateur) ;
Carvalho, Francisco (Auteur de la Conférence) ;
Ruff, Maximilian (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
In the ISem, we have encountered sectorial operators $A$ on a Hilbert space $H$. In Lecture 6 we have defined the exponential $\mathrm{e}^{-t A}$ for $t>0$ if the sectoriality angle of $A$ is smaller than $\frac{\pi}{2}$, the so-defined family $\left(\mathrm{e}^{-t A}\right)_{t>0}$ is called the semigroup associated with $A$. In Proposition 6.6 it was shown that the semigroup yields the solution to the abstract Cauchy problem$$\begin{aligned}\partial_{t} u(t)+A u(t) & =0, \quad(t>0) \\u(0+) & =u_{0}\end{aligned}$$by setting $u(t):=\mathrm{e}^{-t A} u_{0}$. In the same way, one can solve the equation$$\begin{align*}\partial_{t} u(t)+A u(t) & =f(t), \quad(t>0) \tag{2.1}\\u(0+) & =0\end{align*}$$by computing the convolution of $\mathrm{e}^{-t A}$ with $f$; that is,$$u(t):=\int_{0}^{t}e^{-(t-s)A}f(s)ds.$$One can now show that sectoriality of $A$ yields the maximal $L_{2}$-regularity of (2.1); that is, if $f\in L_{2}(0,\infty ;H)$ then the sodefined solution $u$ satisfies $u\in H^{1}(0,\infty ;H)$ or equivalently (due to (2.1)) $Au\in L_{2}(0,\infty ;H)$. It is the main object of this project to generalise this result to operators on Banach spaces $X$.
As we will see, sectoriality is not enough to ensure maximal regularity of (2.1). In fact, some stronger property is needed, namely $\mathscr{R}$-sectoriality, which in the Hilbert space case is equivalent to sectoriality. Moreover, the goal to prove such a result for all Banach spaces turns out to be too ambitious, so we will restrict our attention to so-called UMD spaces (sometimes also called $\mathscr{HT}$-spaces to reflect their relation to the Hilbert transform). This class of Banach spaces turns out to be suited for the application of techniques from Fourier analysis, which will be one of the main tools to prove our goal, which can be formulated as:
Maximal regularity of (2.1) in a UMD space is equivalent to $\mathscr{R}$-sectoriality of $A$.
The main source for this project will be [1], where our main result can be found in Theorem 4.4. Moreover, we will have a look at elliptic operators in divergence form, now on $L_{p}(\mathbb{R^{n}})$ and not on $L_{2}(\mathbb{R^{n}})$, and study the $\mathscr{R}$-sectoriality of those operators. If time permits, we can continue the study of elliptic operators, now on half-spaces and on domains.
Keywords : maximal regularity; $\mathscr{R}$-boundedness; UMD spaces
Codes MSC :
35K90
- Abstract parabolic evolution equations
42B15
- Multipliers
46N20
- Applications to differential and integral equations
|
Informations sur la Rencontre
Nom de la rencontre : Harmonic analysis techniques for elliptic operators / Techniques d'analyse harmonique pour des opérateurs elliptiques Organisateurs de la rencontre : Egert, Moritz ; Haller, Robert ; Monniaux, Sylvie ; Tolksdorf, Patrick Dates : 17/06/2024 - 21/06/2024
Année de la rencontre : 2024
URL Congrès : https://conferences.cirm-math.fr/2972.html
DOI : 10.24350/CIRM.V.20191003
Citer cette vidéo:
Klioba, Katharina ;Seifert, Christian ;Trostorff, Sascha ;Carvalho, Francisco ;Ruff, Maximilian (2024). Project red: $\mathscr{R}$-sectorial Operators and Maximal Regularity. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20191003
URI : http://dx.doi.org/10.24350/CIRM.V.20191003
|
Voir aussi
-
[Multi angle]
Project purple: $L^{p}$-extrapolation à la Blunck-Kunstmann
/ Coordinateur Vogt, Hendrik ; Auteur de la Conférence Heidrich, Erik ; Auteur de la Conférence Söder, Charlotte ; Auteur de la Conférence Qi, Siguang ; Auteur de la Conférence Lenz, Jonas.
-
[Multi angle]
Project cyan: $H^{\infty}$-calculus and square functions on Banach spaces
/ Coordinateur Lorist, Emiel ; Auteur de la Conférence Stojanow, Johannes ; Auteur de la Conférence Sharma, Himani ; Auteur de la Conférence Pritchard, Andrew.
-
[Multi angle]
Project violet: T(1) and T(b) theorems and applications
/ Coordinateur Bortz, Simon ; Auteur de la Conférence Migliaccio, Alessandra ; Auteur de la Conférence Lauterbach, Sven ; Auteur de la Conférence van Dijk, Dann.
-
[Multi angle]
Project orange: Parabolic maximal regularity and the Kato square root property
/ Coordinateur Arendt, Wolfgang ; Coordinateur Schlierf, Manuel ; Auteur de la Conférence Abahmami, Sofian ; Auteur de la Conférence Heister, Henning ; Auteur de la Conférence Jahandideh, Azam ; Auteur de la Conférence Leone, Vinzenzo.
Bibliographie
- DENK, Robert, HIEBER, Matthias, et PRÜSS, Jan. $\mathcal {R} $-boundedness, Fourier multipliers and problems of elliptic and parabolic type. American Mathematical Soc., 2003. - https://doi.org/10.1090/memo/0788