En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Monte Carlo guided Diffusion for Bayesian linear inverse problems

Sélection Signaler une erreur
Multi angle
Auteurs : Le Corff, Sylvain (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Ill-posed linear inverse problems that combine knowledge of the forward measurement model with prior models arise frequently in various applications, from computational photography to medical imaging. Recent research has focused on solving these problems with score-based generative models (SGMs) that produce perceptually plausible images, especially in inpainting problems. In this study, we exploit the particular structure of the prior defined in the SGM to formulate recovery in a Bayesian framework as a Feynman–Kac model adapted from the forward diffusion model used to construct score-based diffusion. To solve this Feynman–Kac problem, we propose the use of Sequential Monte Carlo methods. The proposed algorithm, MCGdiff, is shown to be theoretically grounded and we provide numerical simulations showing that it outperforms competing baselines when dealing with ill-posed inverse problems.

Keywords : Bayesian inverse problem; diffusion models; sequential Monte Carlo

Codes MSC :
62F15 - Bayesian inference
65C05 - Monte Carlo methods
65C60 - Computational problems in statistics

    Informations sur la Vidéo

    Réalisateur : Recanzone, Luca
    Langue : Anglais
    Date de publication : 27/11/2023
    Date de captation : 31/10/2023
    Sous collection : Research School
    arXiv category : Machine Learning ; Statistics ; Methodology
    Domaine : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 00:36:33
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-10-31_le_corff.mp4

Informations sur la Rencontre

Nom de la rencontre : Autumn school in Bayesian Statistics / École d'automne en statistique bayésienne
Organisateurs de la rencontre : Arbel, Julyan ; Etienne, Marie-Pierre ; Filippi, Sarah ; Kon Kam King, Guillaume ; Ryder, Robin ; Ancelet, Sophie ; Bardenet, Rémi ; Bonnet, Anna ; Jacob, Pierre
Dates : 30/10/2023 - 03/11/2023
Année de la rencontre : 2023
URL Congrès : https://conferences.cirm-math.fr/2881.html

Données de citation

DOI : 10.24350/CIRM.V.20107003
Citer cette vidéo: Le Corff, Sylvain (2023). Monte Carlo guided Diffusion for Bayesian linear inverse problems. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20107003
URI : http://dx.doi.org/10.24350/CIRM.V.20107003

Voir aussi

Bibliographie

  • CARDOSO, Gabriel, IDRISSI, Yazid Janati El, CORFF, Sylvain Le, et al. Monte Carlo guided Diffusion for Bayesian linear inverse problems. arXiv preprint arXiv:2308.07983, 2023. - https://arxiv.org/abs/2308.07983



Imagette Video

Sélection Signaler une erreur