En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Rigidity of hyperbolic higher rank lattice actions

Bookmarks Report an error
Multi angle
Authors : Rodriguez Hertz, Federico (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : I will discuss some recent results with Aaron Brown and Zhiren Wang on actions by higher rank lattices on nilmanifolds. I will present the result in the simplest case possible, $SL(n,Z)$ acting on $Tn$, and try to present the ideas of the proof. The result imply existence of invariant measures for $SL(n,Z)$ actions on $Tn$ with standard homotopy data as well as global rigidity of Ansosov actions on infranilmanifolds and existence of semiconjugacies without assumption on existence of invariant measure.

MSC Codes :

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 12/05/14
    Conference Date : 03/12/13
    Subseries : Research talks
    arXiv category : Dynamical Systems
    Mathematical Area(s) : Dynamical Systems & ODE
    Format : MP4 (.mp4) - HD
    Video Time : 01:00:12
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2013-12-03_Hertz.mp4

Information on the Event

Event Title : Jean-Morlet Chair : Hyperbolicity and dimension / Chaire Jean-Morlet : Hyperbolicité et dimension
Event Organizers : Hasselblatt, Boris ; Pesin, Yakov ; Schmeling, Joerg ; Troubetzkoy, Serge ; Vaienti, Sandro
Dates : 02/12/2013 - 05/12/2013
Event Year : 2013
Event URL : https://www.chairejeanmorlet.com/1071.html

Citation Data

DOI : 10.24350/CIRM.V.18481703
Cite this video as: Rodriguez Hertz, Federico (2013). Rigidity of hyperbolic higher rank lattice actions. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18481703
URI : http://dx.doi.org/10.24350/CIRM.V.18481703

Bibliography



Bookmarks Report an error