En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    1

    Determinantal structure of eigenvector correlations in the complex Ginibre ensemble

    Sélection Signaler une erreur
    Multi angle
    Auteurs : Akemann, Gernot (Auteur de la Conférence)
    CIRM (Editeur )

    00:00
    00:00
     

    Résumé : We study the expectation of the matrix of overlaps of left and right eigenvectors in the complex Ginibre ensemble, conditioned on a fixed number of k complex eigenvalues.
    The diagonal (k=1) and off-diagonal overlap (k=2) were introduced by Chalker and Mehlig. They provided exact expressions for finite matrix size N, in terms of a large determinant of size proportional to N. In the large-N limit these overlaps were determined on the global scale and heuristic arguments for the local scaling at the origin were given. The topic has seen a rapid development in the recent past. Our contribution is to derive exact determinantal expressions of size k x k in terms of a kernel, valid for finite N and arbitrary k.
    It can be expressed as an operator acting on the complex eigenvalue correlation functions and allows us to determine all local correlations in the bulk close to the origin, and at the spectral edge. The methods we use are bi-orthogonal polynomials in the complex plane and the analyticity of the diagonal overlap for general k.
    This is joint work with Roger Tribe, Athanasios Tsareas, and Oleg Zaboronski as appeared in arXiv:1903.09016 [math-ph]

    Codes MSC :
    60B20 - Random matrices (probabilistic aspects)
    60G55 - Point processes

      Informations sur la Vidéo

      Réalisateur : Récanzone, Luca
      Langue : Anglais
      Date de publication : 09/05/2019
      Date de captation : 08/04/2019
      Sous collection : Research talks
      arXiv category : Probability ; Mathematical Physics
      Domaine : Mathematical Physics ; Probability & Statistics
      Format : MP4 (.mp4) - HD
      Durée : 00:58:19
      Audience : Researchers
      Download : https://videos.cirm-math.fr/2019-04-08_Akemann.mp4

    Informations sur la Rencontre

    Nom de la rencontre : Chaire Jean-Morlet : Equation intégrable aux données initiales aléatoires / Jean-Morlet Chair : Integrable Equation with Random Initial Data
    Organisateurs de la rencontre : Basor, Estelle ; Bufetov, Alexander ; Cafasso, Mattia ; Grava, Tamara ; McLaughlin, Ken
    Dates : 08/04/2019 - 12/04/2019
    Année de la rencontre : 2019
    URL Congrès : https://www.chairejeanmorlet.com/2104.html

    Données de citation

    DOI : 10.24350/CIRM.V.19514403
    Citer cette vidéo: Akemann, Gernot (2019). Determinantal structure of eigenvector correlations in the complex Ginibre ensemble. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19514403
    URI : http://dx.doi.org/10.24350/CIRM.V.19514403

    Voir aussi

    Bibliographie

    • AKEMANN, Gernot, TRIBE, Roger, TSAREAS, Athanasios, et al. On the determinantal structure of conditional overlaps for the complex Ginibre ensemble. arXiv preprint arXiv:1903.09016, 2019. - https://arxiv.org/abs/1903.09016



    Sélection Signaler une erreur
    Close