https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Understanding the growth of Laplace eigenfunctions (part 1 of 2)
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Understanding the growth of Laplace eigenfunctions (part 1 of 2)

Bookmarks Report an error
Post-edited
Authors : Canzani, Yaiza (Author of the conference)
CIRM (Publisher )

Loading the player...
Laplace eigenfunctions supremum of eigenfunctions conjugate points geodesic beams tubes decomposition average of eigenfunctions

Abstract : In this talk we will discuss a new geodesic beam approach to understanding eigenfunction concentration. We characterize the features that cause an eigenfunction to saturate the standard supremum bounds in terms of the distribution of $L^{2}$ mass along geodesic tubes emanating from a point. We also show that the phenomena behind extreme supremum norm growth is identical to that underlying extreme growth of eigenfunctions when averaged along submanifolds. Using the description of concentration, we obtain quantitative improvements on the known bounds in a wide variety of settings.

MSC Codes :
35P20 - Asymptotic distribution of eigenvalues and eigenfunctions for PD operators
53C21 - Methods of Riemannian geometry, including PDE methods; curvature restrictions
53C22 - Geodesics [See also 58E10]
53C40 - Global submanifolds [See also 53B25]
58J50 - Spectral problems; spectral geometry; scattering theory

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 03/06/2019
    Conference Date : 08/05/2019
    Subseries : Research talks
    arXiv category : Analysis of PDEs ; Spectral Theory
    Mathematical Area(s) : PDE ; Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:48:57
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-05-08_Canzani.mp4

Information on the Event

Event Title : Méthodes microlocales en analyse et géométrie / Microlocal Methods in Analysis and Geometry
Event Organizers : Carron, Gilles ; Mazzeo, Rafe ; Piazza, Paolo ; Wunsch, Jared
Dates : 06/05/2019 - 10/05/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/1988.html

Citation Data

DOI : 10.24350/CIRM.V.19521503
Cite this video as: Canzani, Yaiza (2019). Understanding the growth of Laplace eigenfunctions (part 1 of 2). CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19521503
URI : http://dx.doi.org/10.24350/CIRM.V.19521503

See Also

Bibliography

  • Canzani, Y., & Galkowski, J. (2019). Eigenfunction concentration via geodesic beams. arXiv preprint arXiv:1903.08461. - https://arxiv.org/abs/1903.08461

  • Canzani, Y., & Galkowski, J. (2018). A Novel Approach to Quantitative Improvements for Eigenfunction Averages. arXiv preprint arXiv:1809.06296. - https://arxiv.org/abs/1809.06296

  • Canzani, Y., & Galkowski, J. (2017). On the growth of eigenfunction averages: microlocalization and geometry. arXiv preprint arXiv:1710.07972. - https://arxiv.org/abs/1710.07972

  • Canzani, Y., Galkowski, J., & Toth, J. A. (2018). Averages of eigenfunctions over hypersurfaces. Communications in Mathematical Physics, 360(2), 619-637. - https://arxiv.org/abs/1705.09595



Bookmarks Report an error