En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Quantum simulation of partial differential equations via schrodingerisation - lecture 1

Sélection Signaler une erreur
Multi angle
Auteurs : Liu, Nana (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : One of the oldest and currently most promising application areas for quantum devices is quantum simulation. Popularised by Feynman in the early 1980s, it is important for the efficient simulation – compared to its classical counterpart – of one special partial differential equation (PDE): Schrodinger's equation. This is possible because quantum devices themselves naturally obey Schrodinger's equation. Just like with large-scale quantum systems, classical methods for other high-dimensional and large-scale PDEs often suffer from the curse-of-dimensionality, which a quantum treatment might in certain cases be able to mitigate. Aside from Schrodinger's equation, can quantum simulators also efficiently simulate other PDEs? To enable the simulation of PDEs on quantum devices that obey Schrodinger's equations, it is crucial to first develop good methods for mapping other PDEs onto Schrodinger's equations.After a brief introduction to quantum simulation, I will address the above question by introducing a simple and natural method for mapping other linear PDEs onto Schrodinger's equations. It turns out that by transforming a linear partial differential equation (PDE) into a higher-dimensional space, it can be transformed into a system of Schrodinger's equations, which is the natural dynamics of quantum devices. This new method – called /Schrodingerisation/ – thus allows one to simulate, in a simple way, any general linear partial differential equation and system of linear ordinary differential equations via quantum simulation.This simple methodology is also very versatile. It can be used directly either on discrete-variable quantum systems (qubits) or on analog/continuous quantum degrees of freedom (qumodes). The continuous representation in the latter case can be more natural for PDEs since, unlike most computational methods, one does not need to discretise the PDE first. In this way, we can directly map D-dimensional linear PDEs onto a (D + 1)-qumode quantum system where analog Hamiltonian simulation on (D + 1) qumodes can be used. It is the quantum version of analog computing and is more amenable to near-term realisation.These lectures will show how this Schrodingerisation method can be applied to linear PDEs, systems of linear ODEs and also linear PDEs with random coefficients, where the latter is important in the area of uncertainty quantification. Furthermore, these methods can be extended to solve problems in linear algebra by transforming iterative methods in linear algebra into the evolution of linear ODEs. It can also be applicable to certain nonlinear PDEs. We will also discuss many open questions and new research directions.

Mots-Clés : quantum simulation; partial differential equations; analog systems

Codes MSC :
65M06 - Finite difference methods (IVP of PDE)
65N06 - Finite difference methods
81P68 - Quantum computation

Ressources complémentaires :
https://cemracs2025.math.cnrs.fr/media/uploads/2025/07/21/cemracs_nana.pdf

    Informations sur la Vidéo

    Réalisateur : Récanzone, Luca
    Langue : Anglais
    Date de Publication : 07/08/2025
    Date de Captation : 17/07/2025
    Sous Collection : Research School
    Catégorie arXiv : Quantum Physics
    Domaine(s) : Analyse Numérique & Calcul Formel ; Systèmes Dynamiques & EDO ; EDP ; Mathématiques pour les Sciences & Technologies
    Format : MP4 (.mp4) - HD
    Durée : 01:28:40
    Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2025-07-17_Liu_part1.mp4

Informations sur la Rencontre

Nom de la Rencontre : CEMRACS 2025: Quantum Computing / CEMRACS 2025: Calcul quantique
Organisateurs de la Rencontre : Azoum, Karim ; Chollet, Igor ; Delay, Guillaume ; Dupuy, Mi-Song ; Fabrèges, Benoit ; Guichard, Cindy ; Lhande Pincemin, Marie ; Perret, Ludovic ; Postel, Marie ; Ruatta, Olivier ; Tremblin, Pascal
Dates : 15/07/2025 - 19/07/2025
Année de la rencontre : 2025
URL de la Rencontre : https://conferences.cirm-math.fr/3394.html

Données de citation

DOI : 10.24350/CIRM.V.20376603
Citer cette vidéo: Liu, Nana (2025). Quantum simulation of partial differential equations via schrodingerisation - lecture 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20376603
URI : http://dx.doi.org/10.24350/CIRM.V.20376603

Voir Aussi

Bibliographie



Imagette Video

Sélection Signaler une erreur