En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

High dimensional mean estimation - Lecture 2

Bookmarks Report an error
Multi angle
Authors : Lugosi, Gábor (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Networks are often naturally modeled by random processes in which nodes and edges of the network are added one-by-one, according to some simple stochastic dynamics. Uniform and preferential attachment processes are prime examples of such dynamically growing networks. The statistical problems we address in this talk regard discovering the past of the network when a present-day snapshot is observed. Such problems are sometimes termed 'network archeology'. We present a few results that show that, even in gigantic networks, a lot of information is preserved from the very early days. As the field is still in its infancy, many interesting questions remain to be explored.

Keywords : network archeology; random trees; preferential attachment; broadcasting problem

MSC Codes :

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 14/01/2022
    Conference Date : 16/12/2021
    Subseries : Research School
    arXiv category : Statistics ; Probability ; Computer Science
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:53:47
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-12-15_Lugosi_Part2.mp4

Information on the Event

Event Title : Meeting in Mathematical Statistics - Machine learning and nonparametric statistics / Rencontres de statistique mathématique
Event Organizers : Butucea, Cristina ; Minsker, Stanislav ; Pouet, Christophe ; Spokoiny, Vladimir
Dates : 13/12/2021 - 17/12/2021
Event Year : 2021
Event URL : https://conferences.cirm-math.fr/2581.html

Citation Data

DOI : 10.24350/CIRM.V.19867803
Cite this video as: Lugosi, Gábor (2021). High dimensional mean estimation - Lecture 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19867803
URI : http://dx.doi.org/10.24350/CIRM.V.19867803

See Also

Bibliography

  • DEVROYE, Luc, LERASLE, Matthieu, LUGOSI, Gabor, et al. Sub-Gaussian mean estimators. The Annals of Statistics, 2016, vol. 44, no 6, p. 2695-2725. - https://doi.org/10.1214/16-AOS1440

  • LUGOSI, Gábor et MENDELSON, Shahar. Sub-Gaussian estimators of the mean of a random vector. The annals of statistics, 2019, vol. 47, no 2, p. 783-794. - https://doi.org/10.1214/17-AOS1639

  • LUGOSI, Gabor et MENDELSON, Shahar. Robust multivariate mean estimation: the optimality of trimmed mean. The Annals of Statistics, 2021, vol. 49, no 1, p. 393-410. - https://doi.org/10.1214/20-AOS1961

  • LUGOSI, Gabor et MENDELSON, Shahar. Multivariate mean estimation with direction-dependent accuracy. arXiv preprint arXiv:2010.11921, 2020. - https://arxiv.org/abs/2010.11921

  • LUGOSI, Gábor et MENDELSON, Shahar. Mean estimation and regression under heavy-tailed distributions: A survey. Foundations of Computational Mathematics, 2019, vol. 19, no 5, p. 1145-1190. - https://doi.org/10.1007/s10208-019-09427-x



Imagette Video

Bookmarks Report an error