En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    1

    Welch games to Laver Ideals

    Sélection Signaler une erreur
    Multi angle
    Auteurs : Foreman, Matthew (Auteur de la Conférence)
    CIRM (Editeur )

    00:00
    00:00
     

    Résumé : Kiesler and Tarski characterized weakly compact cardinals as those inaccessible cardinals such that for every κ-complete subalgebra BP(κ)) every κ-complete filter on B can be extended to a κ-complete ultrafilter on B. Welch proposed a variant of Holy-Schlict games where, for a fixed γ, player I and II take turns, with I playing an increasing sequence of subalgebras Ai and II playing an increasing sequence of ultrafilters Ui for i<γ. Player II wins if she can continue playing of length γ.
    By Kiesler-Tarski, player II wins the game with γ=ω if and only if κ is weakly compact. It is immediate that if κ is measurable, then II wins the game of length 2κ. Are these the only cases?
    Nielsen and Welch proved that if II has a winning strategy in the game of length ω+1 then there is an inner model with a measurable cardinal. Welch conjectured that if II has a winning strategy in the game of length ω+1 then there is a precipitous ideal on κ .
    Our first result confirms Welch's conjecture: if II has a winning strategy in the game of length ω+1 then there is a normal, κ-complete precipitous ideal on κ . In fact if γκ is regular and II wins the game of length γ, then there is a normal, κ-complete ideal on κ with a dense tree that is <γ-closed.
    But is this result vacuous? Our second result is that if you start with a model with sufficient fine structure and a measurable cardinal then there is a forcing extension where:
    1. κ is inaccessible and there is no κ+-saturated ideal on κ,
    2. for each regular γκ, player II has a winning strategy in the game of length γ,
    3. for all regular γκ there is a normal fine ideal Iγ such that P(κ)/Iγ has a dense, <γ closed tree.
    The proofs of these results use techniques from the proofs of determinacy, lottery forcing, iterated club shooting and new techniques in inner model theory. They leave many problems open and not guaranteed to be difficult.
    This is joint work of M Foreman, M. Magidor and M. Zeman.

    Keywords : Welch games; dense closed ideals; weakly compact cardinals; fine structure

    Codes MSC :
    03E35 - Consistency and independence results
    03E55 - Large cardinals
    03E65 - Other hypotheses and axioms (set theory)

    Ressources complémentaires :
    https://www.cirm-math.fr/RepOrga/2370/Slides/Foreman.pdf

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 04/10/2021
      Date de captation : 16/09/2021
      Sous collection : Research talks
      arXiv category : Logic
      Domaine : Logic and Foundations
      Format : MP4 (.mp4) - HD
      Durée : 00:53:31
      Audience : Researchers
      Download : https://videos.cirm-math.fr/2021-09-16_Foreman.mp4

    Informations sur la Rencontre

    Nom de la rencontre : XVI International Luminy Workshop in Set Theory / XVI Atelier international de théorie des ensembles
    Organisateurs de la rencontre : Fischer, Vera ; Velickovic, Boban ; Viale, Matteo
    Dates : 13/09/2021 - 17/09/2021
    Année de la rencontre : 2021
    URL Congrès : https://conferences.cirm-math.fr/2370.html

    Données de citation

    DOI : 10.24350/CIRM.V.19809203
    Citer cette vidéo: Foreman, Matthew (2021). Welch games to Laver Ideals. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19809203
    URI : http://dx.doi.org/10.24350/CIRM.V.19809203

    Voir aussi

    Bibliographie

    • Foreman, Matthew, Menachem Magidor, and Martin Zeman. "Games with Filters." arXiv preprint arXiv:2009.04074 (2020). - https://arxiv.org/abs/2009.04074

    • Holy, Peter, and Philipp Schlicht. "A hierarchy of Ramsey-like cardinals." Fundamenta Mathematicae 242 (2018), 49-74 - http://dx.doi.org/10.4064/fm396-9-2017

    • Nielsen, Dan Saattrup, and Philip Welch. "Games and Ramsey-like cardinals." The Journal of Symbolic Logic 84.1 (2019): 408-437. - https://doi.org/10.1017/jsl.2018.75

    • Kanamori A., Magidor M. "The evolution of large cardinal axioms in set theory". In: Müller G.H., Scott D.S. (eds) Higher Set Theory. Lecture Notes in Mathematics, vol 669. (1978) Springer, Berlin, Heidelberg. - http://dx.doi.org/10.1007/BFb0103104



    Imagette Video

    Sélection Signaler une erreur
    Close