Auteurs : ... (Auteur de la Conférence)
... (Editeur )
Résumé :
The real Ginibre ensemble consists of square real matrices whose entries are i.i.d. standard normal random variables. In sharp contrast to the complex and quaternion Ginibre ensemble, real eigenvalues in the real Ginibre ensemble attain positive likelihood. In turn, the spectral radius of a real Ginibe matrix follows a different limiting law for purely real eigenvalues than for non-real ones. Building on previous work by Rider, Sinclair and Poplavskyi, Tribe, Zaboronski, we will show that the limiting distribution of the largest real eigenvalue admits a closed form expression in terms of a distinguished solution to an inverse scattering problem for the Zakharov-Shabat system. This system is directly related to several of the most interesting nonlinear evolution equations in 1+1 dimensions which are solvable by the inverse scattering method, for instance the nonlinear Schr¨odinger equation. The results of this talk are based on the recent preprint arXiv:1808.02419, joint with Jinho Baik.
Codes MSC :
45M05
- Asymptotics
60B20
- Random matrices (probabilistic aspects)
60G70
- Extreme value theory; extremal processes
Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2104/Slides/Bothner.pdf
|
Informations sur la Rencontre
Nom de la rencontre : Chaire Jean-Morlet : Equation intégrable aux données initiales aléatoires / Jean-Morlet Chair : Integrable Equation with Random Initial Data Dates : 08/04/2019 - 12/04/2019
Année de la rencontre : 2019
URL Congrès : https://www.chairejeanmorlet.com/2104.html
DOI : 10.24350/CIRM.V.19517103
Citer cette vidéo:
(2019). When J. Ginibre met E. Schrödinger. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19517103
URI : http://dx.doi.org/10.24350/CIRM.V.19517103
|
Voir aussi
Bibliographie
- Baik, J., & Bothner, T. (2018). The largest real eigenvalue in the real Ginibre ensemble and its relation to the nonlinear Schrödinger equation. arXiv preprint arXiv:1808.02419. - arXiv:1808.02419v3