Auteurs : ... (Auteur de la conférence)
... (Editeur )
Résumé :
Let $K$ be a discretely valued field with ring of integers $R$ and let $d$ be a positive integer. Then the rank $d$ free $R$-submodules of $K^{d}$ (called $R$-lattices) are the $0$-simplices of an infinite simplicial complex called a Bruhat-Tits building. If $O$ is an order in the ring of $d\times d$ matrices over $K$, then the collection of lattices that are also $O$-modules (called $O$-lattices) is a non-empty, bounded and convex subset of the building. Determining what these subsets are is in general a difficult question.
I will report on joint work with Yassine El Maazouz, Gabriele Nebe, Marvin Hahn, and Bernd Sturmfels describing the geometric features of the set of $O$-lattices for some particular orders. If time permits, I will also define spherical codes in Bruhat-Tits buildings and show how these fit in this framework and how they give rise to codes of submodules over chain rings.
Mots-Clés : orders; graduated; polytrope; bolytrope; Bruhat-Tits building
Codes MSC :
11S45
- Algebras and orders, and their zeta functions, See Also {11R52,11R54, 16H05, 16Kxx}
16G30
- Representations of orders, lattices, algebras over commutative rings, See also {16H05}
20E42
- Groups with a $BN$-pair; buildings, See also {51E24}
51E24
- Buildings and the geometry of diagrams
52B20
- Lattice polytopes (convex geometry)
Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2889/Slides/Stanojkovski_slides.pdf
|
Informations sur la Rencontre
Nom de la Rencontre : AGCT - Arithmetic, Geometry, Cryptography and Coding Theory / AGCT - Arithmétique, géométrie, cryptographie et théorie des codes Dates : 05/06/2023 - 09/06/2023
Année de la rencontre : 2023
URL de la Rencontre : https://conferences.cirm-math.fr/2889.html
DOI : 10.24350/CIRM.V.20054903
Citer cette vidéo:
(2023). The geometry of stable lattices in Bruhat-Tits buildings. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20054903
URI : http://dx.doi.org/10.24350/CIRM.V.20054903
|
Voir Aussi
Bibliographie
- EL MAAZOUZ, Yassine, HAHN, Marvin Anas, NEBE, Gabriele, et al. Orders and polytropes: matrix algebras from valuations. Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry, 2021, p. 1-17. - http://dx.doi.org/10.1007/s13366-021-00600-4
- EL MAAZOUZ, Yassine, NEBE, Gabriele, et STANOJKOVSKI, Mima. Bolytrope orders. International Journal of Number Theory, 2022. - https://doi.org/10.1142/S1793042123500471
- STANOJKOVSKI, Mima. Submodule codes as spherical codes in buildings. Designs, Codes and Cryptography, 2023, p. 1-24. - http://dx.doi.org/10.1007/s10623-023-01207-7