En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Automorphic forms and classical partition identities

Bookmarks Report an error
Multi angle
Authors : Mahlburg, Karl (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : I will discuss recent progress in the analytic study of classical partition identities, including the famous « sum-product » formulas of Rogers-Ramanujan, Schur, and Capparelli. Such identities are rich in automorphic objects such as Jacobi theta functions, mock theta functions, and false theta functions. Furthermore, there are interesting connections to the combinatorics of multi-colored partitions, and the calculation of standard modules for Lie algebras and vertex operator theory.

MSC Codes :
11P81 - Elementary theory of partitions
11P82 - Analytic theory of partitions
11Pxx - Additive number theory; partitions
11P84 - Partition identities; identities of Rogers-Ramanujan type

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 18/06/15
    Conference Date : 26/05/15
    Subseries : Research talks
    arXiv category : Number Theory
    Mathematical Area(s) : Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:47:49
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2015-05-26_Mahlburg.mp4

Information on the Event

Event Title : Automorphic forms: advances and applications / Formes automorphes: avancées et applications
Event Organizers : Bringmann, Kathrin ; Lovejoy, Jérémy ; Richter, Olav
Dates : 25/05/15 - 29/05/15
Event Year : 2015
Event URL : http://conferences.cirm-math.fr/1108.html

Citation Data

DOI : 10.24350/CIRM.V.18768803
Cite this video as: Mahlburg, Karl (2015). Automorphic forms and classical partition identities. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18768803
URI : http://dx.doi.org/10.24350/CIRM.V.18768803

Bibliography



Bookmarks Report an error