En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Benign overfitting - Lecture 1

Sélection Signaler une erreur
Multi angle
Auteurs : Bartlett, Peter (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : These lectures present some recent results on two phenomena that have been observed in deep neural networks. The first is benign overfitting: even without any explicit effort to control model complexity, deep learning methods find functions that give a near-perfect fit to noisy training data and yet exhibit good prediction performance in practice. We describe results that characterize this phenomenon in linear regression and in ridge regression. The second phenomenon that we consider is that of adversarial examples: functions computed by deep networkscan be extremely sensitive to small changes in their inputs. We show that this occurs in ReLU networks of constant depth with independent gaussian parameters because the functions that these networks compute are close to linear. The lectures include joint work with Seb Bubeck, Yeshwanth Cherapanamjeri, Phil Long, Gabor, Lugosi, and Alex Tsigler.

Mots-Clés : mathematical statistics; statistical learning theory; linear regression; bias-variance trade-off; ridge regression

Codes MSC :

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 14/01/2022
    Date de Captation : 14/12/2021
    Sous Collection : Research School
    Catégorie arXiv : Machine Learning
    Domaine(s) : Probabilités & Statistiques
    Format : MP4 (.mp4) - HD
    Durée : 01:08:14
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2021-12-13_Bartlett_Part1.mp4

Informations sur la Rencontre

Nom de la Rencontre : Meeting in Mathematical Statistics - Machine learning and nonparametric statistics / Rencontres de statistique mathématique
Organisateurs de la Rencontre : Butucea, Cristina ; Minsker, Stanislav ; Pouet, Christophe ; Spokoiny, Vladimir
Dates : 13/12/2021 - 17/12/2021
Année de la rencontre : 2021
URL de la Rencontre : https://conferences.cirm-math.fr/2581.html

Données de citation

DOI : 10.24350/CIRM.V.19867403
Citer cette vidéo: Bartlett, Peter (2021). Benign overfitting - Lecture 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19867403
URI : http://dx.doi.org/10.24350/CIRM.V.19867403

Voir Aussi

Bibliographie

  • BARTLETT, Peter L., LONG, Philip M., LUGOSI, Gábor, et al. Benign overfitting in linear regression. Proceedings of the National Academy of Sciences, 2020, vol. 117, no 48, p. 30063-30070. - https://arxiv.org/abs/1906.11300

  • BARTLETT, Peter L., LONG, Philip M., LUGOSI, Gábor, et al. Benign overfitting in linear regression. Proceedings of the National Academy of Sciences, 2020, vol. 117, no 48, p. 30063-30070. - https://arxiv.org/abs/2009.14286

  • BARTLETT, Peter L. et LONG, Philip M. Failures of model-dependent generalization bounds for least-norm interpolation. arXiv preprint arXiv:2010.08479, 2020. - https://arxiv.org/abs/2010.08479

  • BARTLETT, Peter L., MONTANARI, Andrea, et RAKHLIN, Alexander. Deep learning: a statistical viewpoint. arXiv preprint arXiv:2103.09177, 2021. - https://arxiv.org/abs/2103.09177



Imagette Video

Sélection Signaler une erreur