Auteurs : Liu, Nana (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
One of the oldest and currently most promising application areas for quantum devices is quantum simulation. Popularised by Feynman in the early 1980s, it is important for the efficient simulation – compared to its classical counterpart – of one special partial differential equation (PDE): Schrodinger's equation. This is possible because quantum devices themselves naturally obey Schrodinger's equation. Just like with large-scale quantum systems, classical methods for other high-dimensional and large-scale PDEs often suffer from the curse-of-dimensionality, which a quantum treatment might in certain cases be able to mitigate. Aside from Schrodinger's equation, can quantum simulators also efficiently simulate other PDEs? To enable the simulation of PDEs on quantum devices that obey Schrodinger's equations, it is crucial to first develop good methods for mapping other PDEs onto Schrodinger's equations.After a brief introduction to quantum simulation, I will address the above question by introducing a simple and natural method for mapping other linear PDEs onto Schrodinger's equations. It turns out that by transforming a linear partial differential equation (PDE) into a higher-dimensional space, it can be transformed into a system of Schrodinger's equations, which is the natural dynamics of quantum devices. This new method – called /Schrodingerisation/ – thus allows one to simulate, in a simple way, any general linear partial differential equation and system of linear ordinary differential equations via quantum simulation.This simple methodology is also very versatile. It can be used directly either on discrete-variable quantum systems (qubits) or on analog/continuous quantum degrees of freedom (qumodes). The continuous representation in the latter case can be more natural for PDEs since, unlike most computational methods, one does not need to discretise the PDE first. In this way, we can directly map D-dimensional linear PDEs onto a (D + 1)-qumode quantum system where analog Hamiltonian simulation on (D + 1) qumodes can be used. It is the quantum version of analog computing and is more amenable to near-term realisation.These lectures will show how this Schrodingerisation method can be applied to linear PDEs, systems of linear ODEs and also linear PDEs with random coefficients, where the latter is important in the area of uncertainty quantification. Furthermore, these methods can be extended to solve problems in linear algebra by transforming iterative methods in linear algebra into the evolution of linear ODEs. It can also be applicable to certain nonlinear PDEs. We will also discuss many open questions and new research directions.
Keywords : quantum simulation; partial differential equations; analog systems
Codes MSC :
65M06
- Finite difference methods (IVP of PDE)
65N06
- Finite difference methods
81P68
- Quantum computation
Ressources complémentaires :
https://cemracs2025.math.cnrs.fr/media/uploads/2025/07/21/cemracs_nana.pdf
|
Informations sur la Rencontre
Nom de la rencontre : CEMRACS 2025: Quantum Computing / CEMRACS 2025: Calcul quantique Organisateurs de la rencontre : Azoum, Karim ; Chollet, Igor ; Delay, Guillaume ; Dupuy, Mi-Song ; Fabrèges, Benoit ; Guichard, Cindy ; Lhande Pincemin, Marie ; Perret, Ludovic ; Postel, Marie ; Ruatta, Olivier ; Tremblin, Pascal Dates : 15/07/2025 - 19/07/2025
Année de la rencontre : 2025
URL Congrès : https://conferences.cirm-math.fr/3394.html
DOI : 10.24350/CIRM.V.20376603
Citer cette vidéo:
Liu, Nana (2025). Quantum simulation of partial differential equations via schrodingerisation - lecture 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20376603
URI : http://dx.doi.org/10.24350/CIRM.V.20376603
|
Voir aussi
-
[Multi angle]
Quantum algorithms for factorization and other problems in cryptanalysis - lecture 2
/ Auteur de la Conférence Fouque, Pierre-Alain.
-
[Multi angle]
Quantum simulation of partial differential equations via schrodingerisation - lecture 2
/ Auteur de la Conférence Liu, Nana.
-
[Multi angle]
Quantum cryptography - lecture 2
/ Auteur de la Conférence Doosti, Mina.
-
[Multi angle]
Quantum error correction - lecture 2
/ Auteur de la Conférence Zémor, Gilles.
-
[Multi angle]
Quantum algorithms for factorization and other problems in cryptanalysis - lecture 1
/ Auteur de la Conférence Fouque, Pierre-Alain.
-
[Multi angle]
Quantum cryptography - lecture 1
/ Auteur de la Conférence Doosti, Mina.
-
[Multi angle]
Advanced quantum algorithms for scientific computing - lecture 2
/ Auteur de la Conférence Międlar, Agnieszka.
-
[Multi angle]
Optimization problem on quantum computers - lecture 2
/ Auteur de la Conférence Hamoudi, Yassine.
-
[Multi angle]
Quantum error correction - lecture 1
/ Auteur de la Conférence Zémor, Gilles.
-
[Multi angle]
Paradigms for the algorithms on different technologies - lecture 2
/ Auteur de la Conférence Ayral, Thomas.
-
[Multi angle]
Advanced quantum algorithms for scientific computing - lecture 1
/ Auteur de la Conférence Międlar, Agnieszka.
-
[Multi angle]
Optimization problem on quantum computers - lecture 1
/ Auteur de la Conférence Hamoudi, Yassine.
-
[Multi angle]
Paradigms for the algorithms on different technologies - lecture 1
/ Auteur de la Conférence Ayral, Thomas.
-
[Multi angle]
Quantum computing hardware: cost of fault-tolerance
/ Auteur de la Conférence Mirrahimi, Mazyar.
Bibliographie
- JIN, Shi, LIU, Nana, et YU, Yue. Quantum simulation of partial differential equations via schrodingerisation: technical details. arXiv preprint arXiv:2212.14703, 2022. - https://doi.org/10.1103/PhysRevA.108.032603
- JIN, Shi, LIU, Nana, et YU, Yue. Quantum simulation of partial differential equations: Applications and detailed analysis. Physical Review A, 2023, vol. 108, no 3, p. 032603. - https://doi.org/10.1103/PhysRevA.108.032603
- JIN, Shi et LIU, Nana. Analog quantum simulation of partial differential equations. Quantum Science and Technology, 2024, vol. 9, no 3, p. 035047. - https://doi.org/10.1088/2058-9565/ad49cf