Auteurs : ... (Auteur de la Conférence)
... (Editeur )
Résumé :
Nonlocal interaction energies are continuum models for large systems of particles, where typically each particle interacts not only with its immediate neighbors, but also with particles that are far away. Examples of these energies arise in many different applications, such as biology (population dynamics), physics (Ginzburg-Landau vortices), and material science (dislocation theory). A fundamental question is understanding the optimal arrangement of particles at equilibrium, which are described, at least in average, by minimizers of the energy. In this talk I will focus on a class of nonlocal energies that are perturbations of the Coulomb energy and I will show how their minimizers can be explicitly characterized. This is based on joint works with J. Mateu, L. Rondi, L. Scardia, and J. Verdera.
Keywords : nonlocal interaction; potential theory; dislocations
Codes MSC :
31A15
- Potentials and capacity, harmonic measure, extremal length, See also {30C85}
49K20
- Optimal control problems with PDE (optimality conditions)
35Q70
- PDEs in connection with mechanics of particles and systems
|
Informations sur la Rencontre
Nom de la rencontre : Beyond Elasticity: Advances and Research Challenges / Au-delà de l'élasticité : avancées dans la recherche et prochains défis Dates : 16/05/2022 - 20/05/2022
Année de la rencontre : 2022
URL Congrès : https://conferences.cirm-math.fr/2535.html
DOI : 10.24350/CIRM.V.19918603
Citer cette vidéo:
(2022). Explicit minimizers for a class of nonlocal interaction energies. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19918603
URI : http://dx.doi.org/10.24350/CIRM.V.19918603
|
Voir aussi
Bibliographie
- MORA, Maria Giovanna, RONDI, Luca, et SCARDIA, Lucia. The equilibrium measure for a nonlocal dislocation energy. Communications on Pure and Applied Mathematics, 2019, vol. 72, no 1, p. 136-158. - https://doi.org/10.1002/cpa.21762
- MATEU, Jоan, MORA, Maria Giovanna, RONDI, Luca, et al. Explicit minimizers of some non-local anisotropic energies: a short proof. Izvestiya: Mathematics, 2021, vol. 85, no 3, p. 468. - https://doi.org/10.1070/IM9048