En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Variations on an example of Hirzebruch

Bookmarks Report an error
Multi angle
Authors : Stover, Matthew (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : In '84, Hirzebruch constructed a very explicit noncompact ball quotient manifold in the process of constructing smooth projective surfaces with Chern slope arbitrarily close to 3. I will discuss how this and some closely related ball quotients are useful in answering a variety of other questions. Some of this is joint with Luca Di Cerbo.

MSC Codes :
32Q45 - Hyperbolic and Kobayashi hyperbolic manifolds
57M50 - Geometric structures on low-dimensional manifolds
14M27 - Compactifications; symmetric and spherical varieties

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 17/06/16
    Conference Date : 01/06/2016
    Subseries : Research talks
    arXiv category : Algebraic Geometry ; Geometric Topology ; Differential Geometry
    Mathematical Area(s) : Algebraic & Complex Geometry ; Topology
    Format : MP4 (.mp4) - HD
    Video Time : 01:03:29
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2016-06-01_Stover.mp4

Information on the Event

Event Title : Topology of complex algebraic varieties / Topologie des variétés algébriques complexes
Event Organizers : Eyssidieux, Philippe ; Klinger, Bruno ; Kotschick, Dieter ; Toledo, Domingo
Dates : 30/05/2016 - 03/06/2016
Event Year : 2016
Event URL : http://conferences.cirm-math.fr/1398.html

Citation Data

DOI : 10.24350/CIRM.V.18990203
Cite this video as: Stover, Matthew (2016). Variations on an example of Hirzebruch. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18990203
URI : http://dx.doi.org/10.24350/CIRM.V.18990203

See Also

Bibliography

  • Di Cerbo, Luca F., & Stover, Matthew (2015). Multiple realizations of varieties as ball quotient compactifications. - http://arxiv.org/abs/1503.06712

  • Di Cerbo, Luca F., & Stover, Matthew (2015). Classification and arithmeticity of toroidal compactifications with $3\bar{c}_2=\bar{c}^2_1=3$ - http://arxiv.org/abs/1505.01414



Bookmarks Report an error