En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Relative entropy for the Euler-Korteweg system with non-monotone pressure

Bookmarks Report an error
Multi angle
Authors : Giesselmann, Jan (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : In this joint work with Athanasios Tzavaras (KAUST) and Corrado Lattanzio (L'Aquila) we develop a relative entropy framework for Hamiltonian flows that in particular covers the Euler-Korteweg system, a well-known diffuse interface model for compressible multiphase flows. We put a particular emphasis on extending the relative entropy framework to the case of non-monotone pressure laws which make the energy functional non-convex.The relative entropy computation directly implies weak (entropic)-strong uniqueness, but we will also outline how it can be used in other contexts. Firstly, we describe how it can be used to rigorously show that in the large friction limit solutions of Euler-Korteweg converge to solutions of the Cahn-Hilliard equation. Secondly, we explain how the relative entropy can be used for obtaining a posteriori error estimates for numerical approximation schemes.

Keywords : Euler-Korteweg; relative entropy; weak-strong uniqueness

MSC Codes :
76D45 - Capillarity, See also {76B45}
35Q31 - Euler equations
76T10 - Liquid-gas two-phase flows, bubbly flows

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 14/10/2019
    Conference Date : 24/09/2019
    Subseries : Research talks
    arXiv category : Analysis of PDEs
    Mathematical Area(s) : Analysis and its Applications ; Numerical Analysis & Scientific Computing
    Format : MP4 (.mp4) - HD
    Video Time : 00:48:31
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-09-24_Giesselmann.mp4

Information on the Event

Event Title : Inhomogeneous Flows: Asymptotic Models and Interfaces Evolution / Fluides inhomogènes : modèles asymptotiques et évolution d'interfaces
Event Organizers : Charve, Frédéric ; Danchin, Raphaël ; Haspot, Boris ; Monniaux, Sylvie
Dates : 23/09/2019 - 27/09/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/1919.html

Citation Data

DOI : 10.24350/CIRM.V.19562803
Cite this video as: Giesselmann, Jan (2019). Relative entropy for the Euler-Korteweg system with non-monotone pressure. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19562803
URI : http://dx.doi.org/10.24350/CIRM.V.19562803

See Also

Bibliography

  • J. Giesselmann, A. E. Tzavaras. Stability properties of the Euler-Korteweg system with nonmonotone pressures. Appl. Anal. 96 (2017), no. 9, 1528–1546. - https://doi.org/10.1080/00036811.2016.1276175

  • J. Giesselmann, C. Lattanzio, A. E. Tzavaras. Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics. Arch. Ration. Mech. Anal. 223 (2017), no. 3, 1427–1484. - https://doi.org/10.1007/s00205-016-1063-2



Bookmarks Report an error