Auteurs : ... (Auteur de la conférence)
... (Editeur )
Résumé :
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:
* $K3$ surfaces in the Enriques-Kodaira classification.
* Examples; Kummer surfaces.
* Basic properties of $K3$ surfaces; Torelli theorem and surjectivity of the period map.
* The study of automorphisms on $K3$ surfaces: basic facts, examples.
* Symplectic automorphisms of $K3$ surfaces, classification, moduli spaces.
Codes MSC :
14C20
- Divisors, linear systems, invertible sheaves
14C22
- Picard groups
14J10
- Families, moduli, classification: algebraic theory
14J27
- Elliptic surfaces
14J28
- $K3$ surfaces and Enriques surfaces
14J50
- Automorphisms of surfaces and higher-dimensional varieties
14L30
- Group actions on varieties or schemes (quotients)
|
Informations sur la Rencontre
Nom de la Rencontre : Complex geometry: a modern viewpoint / Géométrie complexe : un point de vue moderne Dates : 28/01/2019 - 01/02/2019
Année de la rencontre : 2019
URL de la Rencontre : https://conferences.cirm-math.fr/2098.html
DOI : 10.24350/CIRM.V.19490003
Citer cette vidéo:
(2019). Topics on $K3$ surfaces - Lecture 3: Basic properties of $K3$ surfaces. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19490003
URI : http://dx.doi.org/10.24350/CIRM.V.19490003
|
Voir Aussi
Bibliographie
- Artebani, M., Sarti, A., & Taki, S. (2011). $K3$ surfaces with non-symplectic automorphisms of prime order. With an appendix by Shigeyuki Kondo. Mathematische Zeitschrift, 268(1-2), 507-533 - https://doi.org/10.1007/s00209-010-0681-x
- Barth, W.P., Hulek, K., Peters, C.A.M., & Van de Ven, A. (2004). Compact complex surfaces. (Ergebnisse der Mathematik und ihrer Grenzgebiete). Berlin: Springer - http://dx.doi.org/10.1007/978-3-642-57739-0
- Beauville, A. (1996). Complex algebraic surfaces (London Mathematical Society Student Texts). Cambridge: Cambridge University Press - http://dx.doi.org/10.1017/CBO9780511623936
- Garbagnati, A., & Sarti, A. (2009). Elliptic fibrations and symplectic automorphisms on $K3$ surfaces. Communications in Algebra, 37(10), 3601-3631 - https://doi.org/10.1080/00927870902828785
- Garbagnati, A., & Sarti, A. (2007). Symplectic automorphisms of prime order on $K3$ surfaces. Journal of Algebra, 318(1), 323-350 - https://doi.org/10.1016/j.jalgebra.2007.04.017
- Géométrie des surfaces $K3$ : modules et périodes - Séminaire Palaiseau. Astérisque, no. 126 (1985). Paris: Société Mathématique de France - http://www.numdam.org/item/AST_1985__126_/
- Nikulin, V.V. (1980). Finite automorphism groups of Kähler $K3$ surfaces. Transactions of the Moscow Mathematical Society, 38, 71-135 - https://zbmath.org/?q=an%3A0454.14017
- Nikulin, V.V. (1975). On Kummer surfaces. Mathematics of the USSR. Izvestiya, 9(2), 261-275 - https://doi.org/10.1070%2Fim1975v009n02abeh001477
- Saint-Donat, B. (1974). Projective Models of $K3$ surfaces. American Journal of Mathematics, 96(4), 602–639 - http://dx.doi.org/10.2307/2373709