Auteurs : ... (Auteur de la Conférence)
... (Editeur )
Résumé :
Since the early 70s, Mackey and Green functors have been successfully used to model the induction and restriction maps which are ubiquitous in the representation theory of finite groups. In concrete examples, the latter maps are typically distilled, in some way, from induction and restriction functors between additive (abelian, triangulated...) categories. In order to better capture this richer layer of equivariant information with a (light!) set of axioms, we are naturally led to the notions of Mackey and Green 2-functors. Many such structures have been in use for a long time in algebra, geometry and topology. We survey examples and applications of this young—yet arguably overdue—theory. This is partially joint work with Paul Balmer and Jun Maillard.
Keywords : Mackey functors; Green functors; finite groups; 2-categories
Codes MSC :
18B40
- Groupoids, semigroupoids, semigroups, groups (viewed as categories), See also {20Axx, 20Lxx, 20Mxx}
20J05
- Homological methods in group theory
55P91
- Equivariant homotopy theory, See also {19L47}
Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2339/Slides/DellAmbrogio-ChroK.pdf
|
Informations sur la Rencontre
Nom de la rencontre : Chromatic Homotopy, K-Theory and Functors / Homotopie chromatique, K-théorie et foncteurs Dates : 23/01/2023 - 27/01/2023
Année de la rencontre : 2023
URL Congrès : https://conferences.cirm-math.fr/2339.html
DOI : 10.24350/CIRM.V.19996703
Citer cette vidéo:
(2023). A survey of Mackey and Green 2-functors. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19996703
URI : http://dx.doi.org/10.24350/CIRM.V.19996703
|
Voir aussi
Bibliographie
- BALMER, Paul et DELL'AMBROGIO, Ivo. Mackey 2-Functors and Mackey 2-Motives. 2020. - https://doi.org/10.4171/209
- BALMER, Paul et DELL'AMBROGIO, Ivo. Green equivalences in equivariant mathematics. Mathematische Annalen, 2021, vol. 379, no 3-4, p. 1315-1342. - http://dx.doi.org/10.1007/s00208-021-02145-2
- DELL'AMBROGIO, Ivo. Green 2-functors. Transactions of the American Mathematical Society, 2022, vol. 375, no 11, p. 7783-7829. - http://dx.doi.org/10.1090/tran/8681
- MAILLARD, Jun. A categorification of the Cartan-Eilenberg formula. Advances in Mathematics, 2022, vol. 396, p. 108187. - https://doi.org/10.1016/j.aim.2022.108187