En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

The multinomial dimer model

Bookmarks Report an error
Multi angle
Authors : Wolfram, Catherine (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : An $N$ dimer cover of a graph is a collection of edges such that every vertex is contained in exactly $N$ edges of the collection. The multinomial dimer model studies a family of natural but non-uniform measures on $N$ dimer covers. In the large $N$ limit, this model turns out to be exactly solvable in a strong sense, in any dimension $N$. In this talk, I will define the model, and discuss its properties on subgraphs of lattices in the iterated limit as the multiplicity $N$ and then the size of the graph go to infinity, analogous to the scaling limit question for 2D standard dimers addressed by Cohn, Kenyon, and Propp. In this setting we can explicitly compute limit shapes in some examples, in particular for the Aztec diamond and a 3D analog called the Aztec cuboid. I will also discuss the surrounding theory, including explicit formulas for the free energy, large deviations, EulerLagrange equations, gauge functions, and regularity properties of limit shapes.This is joint work with Rick Kenyon.

Keywords : dimer model; large N limit; domino tilings; variational principle; large deviations; limit shape; critical gauge

MSC Codes :
60F10 - Large deviations
82B20 - Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs
82B23 - Exactly solvable models; Bethe ansatz

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 03/07/2025
    Conference Date : 16/06/2025
    Subseries : Research talks
    arXiv category : Probability ; Mathematical Physics ; Combinatorics
    Mathematical Area(s) : Combinatorics ; Mathematical Physics ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:59:53
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2025-06-16_Wolfram.mp4

Information on the Event

Event Title : Perfectly matched perspectives on statistical mechanics, combinatorics and geometry / Perspectives couplées sur la mécanique statistique, la combinatoire et la géométrie
Event Organizers : Boutillier, Cédric ; Chhita, Sunil ; George, Terrence ; Li, Zhongyang ; Tilière, Béatrice de
Dates : 16/06/2025 - 20/06/2025
Event Year : 2025
Event URL : https://conferences.cirm-math.fr/3178.html

Citation Data

DOI : 10.24350/CIRM.V.20365303
Cite this video as: Wolfram, Catherine (2025). The multinomial dimer model. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20365303
URI : http://dx.doi.org/10.24350/CIRM.V.20365303

See Also

Bibliography



Imagette Video

Bookmarks Report an error