Auteurs : ... (Auteur de la conférence)
... (Editeur )
Résumé :
We discuss some examples of the "good" effects of "very bad", "irregular" functions. In particular we will look at non-linear differential (partial or ordinary) equations perturbed by noise. By defining a suitable notion of "irregular" noise we are able to show, in a quantitative way, that the more the noise is irregular the more the properties of the equation are better. Some examples includes: ODE perturbed by additive noise, linear stochastic transport equations and non-linear modulated dispersive PDEs. It is possible to show that the sample paths of Brownian motion or fractional Brownian motion and related processes have almost surely this kind of irregularity. (joint work with R. Catellier and K. Chouk)
Codes MSC :
35Q53
- KdV-like (Korteweg-de Vries) equations
35R60
- PDEs with randomness, stochastic PDE
60H15
- Stochastic partial differential equations
35D30
- Weak solutions of PDE
|
Informations sur la Rencontre
Nom de la Rencontre : Averaging and homogenization in deterministic and stochastic systems / Moyennisation et homogénéisation dans les systèmes déterministes et stochastiques Dates : 11/05/15 - 15/05/15
Année de la rencontre : 2015
URL de la Rencontre : http://conferences.cirm-math.fr/1198.html
DOI : 10.24350/CIRM.V.18762503
Citer cette vidéo:
(2015). Pathwise regularisation by noise in PDEs. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18762503
URI : http://dx.doi.org/10.24350/CIRM.V.18762503
|
Bibliographie
- Beck, L., Flandoli, F., Gubinelli, M., & Maurelli, M. (2014). Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness. - http://arxiv.org/abs/1401.1530
- Catellier, R. (2015). Rough linear transport equation with an irregular drift. - http://arxiv.org/abs/1501.03000
- Catellier, R., & Gubinelli, M. (2014). Averaging along irregular curves and regularisation of ODEs. - http://arxiv.org/abs/1205.1735
- Chouk, K., & Gubinelli, M. (2015). Nonlinear PDEs with modulated dispersion I: Nonlinear Schrödinger equations. - http://arxiv.org/abs/1303.0822
- Chouk, K., & Gubinelli, M. (2014). Nonlinear PDEs with modulated dispersion II: Korteweg--de Vries equation. - http://arxiv.org/abs/1406.7675