Authors : Forien, Raphaël (Author of the conference)
CIRM (Publisher )
Abstract :
Reaction diffusion equations have been introduced during the early 20th century to model the density of populations undergoing range expansions in various contexts. These equations commonly admit travelling wave solutions, i.e. the population expands at a constant speed with a stationary profile. These deterministic models can be obtained as rescaling limits of stochastic population models when the population density tends to infinity. But do these stochastic models also admit such (random) travelling fronts? If so, what is the asymptotic speed of these fronts, and how does the nature of the front affect this speed? These questions have been the subject of many studies in the case of the Fisher-Kolmogorov-Petrovsky-Piskunov equation, and in this talk I will give some partial answers in the case of reaction-diffusion equations with a bistable reaction term.
The latter type of equations arises when one is interested in the motion of hybrid zones or the expansion of populations with an Allee effect. We shall see that their behaviour is in sharp contrast with that of the stochastic F-KPP equation.
joint work with Alison Etheridge and Sarah Penington
Keywords : stochastic reaction-diffusion equation; bistable wave; random travelling front
MSC Codes :
60F17
- Functional limit theorems; invariance principles
60H15
- Stochastic partial differential equations
92D25
- Population dynamics (general)
Film maker : Hennenfent, Guillaume
Language : English
Available date : 02/08/2021
Conference Date : 01/07/2021
Subseries : Research talks
arXiv category : Probability
Mathematical Area(s) : Probability & Statistics
Format : MP4 (.mp4) - HD
Video Time : 00:33:37
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2021-07-01_Forien.mp4
|
Event Title : 5th Workshop Probability and Evolution / 5ème rencontre Probabilités et évolution Event Organizers : Lambert, Amaury ; Pfaffelhuber, Peter Dates : 28/06/2021 - 02/07/2021
Event Year : 2021
Event URL : https://conferences.cirm-math.fr/2307.html
DOI : 10.24350/CIRM.V.19772803
Cite this video as:
Forien, Raphaël (2021). Fluctuations in stochastic pushed fronts. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19772803
URI : http://dx.doi.org/10.24350/CIRM.V.19772803
|
See Also
Bibliography
- BIRZU, Gabriel, HALLATSCHEK, Oskar, et KOROLEV, Kirill S. Fluctuations uncover a distinct class of traveling waves. Proceedings of the National Academy of Sciences, 2018, vol. 115, no 16, p. E3645-E3654. - https://doi.org/10.1073/pnas.1715737115
- BRASSESCO, S., DE MASI, A., et PRESUTTI, E. Brownian fluctuations of the interface in the D= 1 Ginzburg-Landau equation with noise. In : Annales de l'IHP Probabilités et statistiques. 1995. p. 81-118. - http://www.numdam.org/article/AIHPB_1995__31_1_81_0.pdf
- ETHERIDGE, Alison et PENINGTON, Sarah. Genealogies in bistable waves. arXiv preprint arXiv:2009.03841, 2020. - https://arxiv.org/abs/2009.03841
- FUNAKI, Tadahisa. The scaling limit for a stochastic PDE and the separation of phases. Probability Theory and Related Fields, 1995, vol. 102, no 2, p. 221-288. - https://doi.org/10.1007/BF01213390