En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Structure of supersingular elliptic curve isogeny graphs

Sélection Signaler une erreur
Multi angle
Auteurs : Scheidler, Renate (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Supersingular elliptic curve isogeny graphs have isomorphism classes of supersingular elliptic curves over a finite field as their vertices and isogenies of some fixed degree between them as their edges. Due to their apparent "random" nature, supersingular isogeny graphs - which are optimal expander graphs - have been used as a setting for certain cryptographic schemes that are resistant to attacks by quantum computers. Hidden structures in these graphs may have implications to the security of these systems. In this talk, we analyze a number of graph theoretic structural properties of supersingular isogeny graphs over a finite field $\mathbb{F}_{p^2}$ and their subgraphs induced by the vertices defined over $\mathbb{F}_p$. This is joint work with Sarah Arpin (Virginia Tech) and our jointly supervised undergraduate student Taha Hedayat (University of Calgary).

Keywords : supersingular elliptic curve ℓ-isogeny graph; spine; graph diameter; graph center

Codes MSC :
05C40 - Connectivity
11-04 - Explicit machine computation and programs (not the theory of computation or programming)
11G20 - Curves over finite and local fields
14H52 - Elliptic curves
11-11
Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/3343/Slides/Scheidler_AGC%5E2T.pdf

    Informations sur la Vidéo

    Réalisateur : Récanzone, Luca
    Langue : Anglais
    Date de publication : 03/07/2025
    Date de captation : 10/06/2025
    Sous collection : Research talks
    arXiv category : Number Theory
    Domaine : Number Theory
    Format : MP4 (.mp4) - HD
    Durée : 00:56:16
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2025-06-10_scheidler.mp4

Informations sur la Rencontre

Nom de la rencontre : AGCT 2025 - Arithmetic, Geometry, Cryptography and Coding Theory / AGCT 2025 - Arithmétique, Géométrie, Cryptographie et Théorie des Codes
Organisateurs de la rencontre : Aubry, Yves ; Pazuki, Fabien ; Salgado, Cecilia
Dates : 09/06/2025 - 13/06/2025
Année de la rencontre : 2025
URL Congrès : https://conferences.cirm-math.fr/3343.html

Données de citation

DOI : 10.24350/CIRM.V.20363403
Citer cette vidéo: Scheidler, Renate (2025). Structure of supersingular elliptic curve isogeny graphs. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20363403
URI : http://dx.doi.org/10.24350/CIRM.V.20363403

Voir aussi

Bibliographie



Imagette Video

Sélection Signaler une erreur