En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    1

    Box renormalization as a 'black box'

    Sélection Signaler une erreur
    Multi angle
    Auteurs : Drach, Kostiantyn (Auteur de la conférence)
    CIRM (Editeur )

    00:00
    00:00
     

    Résumé : The concept of a complex box mapping (or puzzle mapping) is a generalization of the classical notion of polynomial-like map to the case when one allows for countably many components in the domain and finitely many components in the range of the mapping. In one-dimensional dynamics, box mappings appear naturally as first return maps to certain nice sets, and hence one arrives at a notion of box renormalization. We say that a rational map is box renormalizable if the first return map to a well-chosen neighborhood of the set of critical points (intersecting the Julia set) has a structure of a box mapping. In our talk, we will discuss various features of general box mappings, as well as so-called dynamically natural box mappings, focusing on their rigidity properties. We will then show how these results can be used almost as 'black boxes' to conclude similar rigidity properties for box renormalizable rational maps. We will give several examples to illustrate this procedure, these examples include, most prominently, complex polynomials of arbitrary degree and their Newton maps. (The talk is based on joint work with Trevor Clark, Oleg Kozlovski, Dierk Schleicher and Sebastian van Strien.)

    Mots-Clés : Box mapping; puzzle map; renormalization; rigidity; local connectivity

    Codes MSC :
    37F10 - Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
    37F31 - Quasiconformal methods in holomorphic dynamics; quasiconformal dynamics
    37F46 - Bifurcations; parameter spaces in holomorphic dynamics; the Mandelbrot and Multibrot sets

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de Publication : 02/11/2021
      Date de Captation : 23/09/2021
      Sous Collection : Research School
      Catégorie arXiv : Dynamical Systems
      Domaine(s) : Systèmes Dynamiques & EDO
      Format : MP4 (.mp4) - HD
      Durée : 01:04:27
      Audience : Chercheurs
      Download : https://videos.cirm-math.fr/2021-09-23_Drach.mp4

    Informations sur la Rencontre

    Nom de la Rencontre : Advancing Bridges in Complex Dynamics / Avancer les connections dans la dynamique complexe
    Organisateurs de la Rencontre : Benini, Anna Miriam ; Drach, Kostiantyn ; Dudko, Dzmitry ; Hlushchanka, Mikhail ; Schleicher, Dierk
    Dates : 20/09/2021 - 24/09/2021
    Année de la rencontre : 2021
    URL de la Rencontre : https://conferences.cirm-math.fr/2546.html

    Données de citation

    DOI : 10.24350/CIRM.V.19811903
    Citer cette vidéo: Drach, Kostiantyn (2021). Box renormalization as a 'black box'. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19811903
    URI : http://dx.doi.org/10.24350/CIRM.V.19811903

    Voir Aussi

    Bibliographie

    • CLARK, Trevor, DRACH, Kostiantyn, KOZLOVSKI, Oleg, et al. The dynamics of complex box mappings. arXiv preprint arXiv:2105.08654, 2021. - https://arxiv.org/abs/2105.08654

    • DRACH, Kostiantyn et SCHLEICHER, Dierk. Rigidity of Newton dynamics. arXiv preprint arXiv:1812.11919, 2018. - https://arxiv.org/abs/1812.11919v2

    • DRACH, Kostiantyn, LODGE, Russell, SCHLEICHER, Dierk, et al. Puzzles and the Fatou–Shishikura injection for rational Newton maps. Transactions of the American Mathematical Society, 2021, vol. 374, no 4, p. 2753-2784. - https://doi.org/10.1090/tran/8273

    • DRACH, Kostiantyn, MIKULICH, Yauhen, RÜCKERT, Johannes, et al. A combinatorial classification of postcritically fixed Newton maps. Ergodic Theory and Dynamical Systems, 2019, vol. 39, no 11, p. 2983-3014. - https://doi.org/10.1017/etds.2018.2



    Imagette Video

    Sélection Signaler une erreur
    Close