Auteurs : Araujo, Carolina (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
In the last few decades, much progress has been made in birational algebraic geometry. The general viewpoint is that complex projective manifolds should be classified according to the behavior of their canonical class. As a result of the minimal model program (MMP), every complex projective manifold can be built up from 3 classes of (possibly singular) projective varieties, namely, varieties $X$ for which $K_X$ satisfies $K_X<0$, $K_X\equiv 0$ or $K_X>0$. Projective manifolds $X$ whose anti-canonical class $-K_X$ is ample are called Fano manifolds.
Techniques from the MMP have been successfully applied to the study of global properties of holomorphic foliations. This led, for instance, to Brunella's birational classification of foliations on surfaces, in which the canonical class of the foliation plays a key role. In recent years, much progress has been made in higher dimensions. In particular, there is a well developed theory of Fano foliations, i.e., holomorphic foliations $F$ on complex projective varieties with ample anti-canonical class $-K_F$.
This mini-course is devoted to reviewing some aspects of the theory of Fano Foliations, with a special emphasis on Fano foliations of large index. We start by proving a fundamental algebraicity property of Fano foliations, as an application of Bost's criterion of algebraicity for formal schemes. We then introduce and explore the concept of log leaves. These tools are then put together to address the problem of classifying Fano foliations of large index
Keywords : birational geometry; Fano varieties; holomorphic foliations
Codes MSC :
14E30
- Minimal model program (Mori theory, extremal rays)
37F75
- Holomorphic foliations and vector fields
14M22
- Rationally connected varieties
Ressources complémentaires :
https://www.cirm-math.com/uploads/2/6/6/0/26605521/lecture3_public.pdfhttps://www.cirm-math.com/uploads/2/6/6/0/26605521/problems.pdf
|
Informations sur la Rencontre
Nom de la rencontre : Jean-Morlet Chair 2020 - Research School: Geometry and Dynamics of Foliations / Chaire Jean-Morlet 2020 - Ecole : Géométrie et dynamiques des feuilletages Organisateurs de la rencontre : Druel, Stéphane ; Pereira, Jorge Vitório ; Rousseau, Erwan Dates : 18/05/2020 - 22/05/2020
Année de la rencontre : 2020
URL Congrès : https://www.chairejeanmorlet.com/2251.html
DOI : 10.24350/CIRM.V.19632103
Citer cette vidéo:
Araujo, Carolina (2020). Fano foliations 3 - Classification of Fano foliations of large index - lecture 4. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19632103
URI : http://dx.doi.org/10.24350/CIRM.V.19632103
|
Voir aussi
Bibliographie
- Araujo Carolina, Druel Stéphane: Characterization of generic projective space bundles and algebraicity of foliations. Comment. Math. Helv. 94 (2019), 833-853 - http://dx.doi.org/10.4171/CMH/475
- ARAUJO, Carolina et DRUEL, Stéphane. On Fano foliations 2. In : Foliation Theory in Algebraic Geometry. Springer, Cham, 2016. p. 1-20 - https://doi.org/10.1007/978-3-319-24460-0_1
- ARAUJO, Carolina et DRUEL, Stéphane. On fano foliations. Advances in Mathematics, 2013, vol. 238, p. 70-118 - https://doi.org/10.1016/j.aim.2013.02.003
- KOLLÁR, János, MIYAOKA, Yoichi, MORI, Shigefumi, et al. Rational connectedness and boundedness of Fano manifolds. Journal of Differential Geometry, 1992, vol. 36, no 3, p. 765-779. - http://dx.doi.org/10.4310/jdg/1214453188
- Kobayashi, Shoshichi; Ochiai, Takushiro. Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ. 13 (1973), no. 1, 31--47 - http://dx.doi.org/10.1215/kjm/1250523432
- MUKAI, Shigeru. Fano 3—f0lds. Complex Projective Geometry: Selected Papers, 1992, vol. 179, p. 255. - https://doi.org/10.1017/CBO9780511662652.018
- Araujo, C., Druel, S. & Kovács, S. Cohomological characterizations of projective spaces and hyperquadrics. Invent. math. 174, 233 (2008) - http://dx.doi.org/10.1007/s00222-008-0130-1
- Wahl, J.M. A cohomological characterization of ℙn . Invent Math 72, 315–322 (1983). - http://dx.doi.org/10.1007/BF01389326
- CHO, Koji, MIYAOKA, Yoichi, SHEPHERD-BARRON, Nicholas I., et al. Characterizations of projective space and applications to complex symplectic manifolds. In : Higher dimensional birational geometry. Mathematical Society of Japan, 2002. p. 1-88. - http://dx.doi.org/10.2969/aspm/03510001