En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Deep learning of diffeomorphisms for optimal reparametrizations of shapes

Bookmarks Report an error
Multi angle
Authors : Celledoni, Elena (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Finding the optimal reparametrization in shape analysis of curves or surfaces is a computationally demanding task. The problem can be phrased as an optimisation problem on the infinite dimensional group of orientation preserving diffeomorphisms $\mathrm{Diff}^+(\Omega)$, where $\Omega$ is the domain where the curves or surfaces are defined.
We consider the composition of a finite number of elementary diffeomprphisms
\begin{equation}
\label{elem_diff}
\varphi_{\ell}:=\mathrm{id}+\sum_{j=1}^M \lambda_j^{\ell} f_j,\qquad \ell=1,\dots , L,\qquad \varphi\approx \varphi_L\circ \cdots \circ\varphi_1,
\end{equation}
where $\{f_i\}_{i=1}^{\infty}$, in $T_{\mathrm{id}}\mathrm{Diff}^+(\Omega)$ is an orthonormal basis, and we optimise simultaneously on all the parameters $\{\lambda_j^{\ell}\}$ for $j=1,\dots ,M$ and $\ell=1,\dots, L$. The obtained algorithm is similar to a deep neural network and its implementation can be carried out using PyTorch. Properties and analysis of the method will be discussed as well as numerical results.

Keywords : shape analysis; deep learning of diffeomorphisms; infinite dimensional Lie groups

MSC Codes :
55Q07 - Shape groups
68T07 - Artificial neural networks and deep learning

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 02/05/2022
    Conference Date : 18/04/2022
    Subseries : Research talks
    arXiv category : Numerical Analysis ; Differential Geometry ; Computation
    Mathematical Area(s) : Numerical Analysis & Scientific Computing ; Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:39:16
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-04-18_Celledoni.mp4

Information on the Event

Event Title : Energy-Based Modeling, Simulation, and Control of Complex Constrained Multiphysical Systems / Modélisation structurée, intégration géométrique et commande de systèmes multiphysiques contraints
Event Organizers : Kotyczka, Paul ; Le Gorrec, Yann ; Matignon, Denis ; Scherpen, Jacquelien ; Unger, Benjamin
Dates : 18/04/2022 - 22/04/2022
Event Year : 2022
Event URL : https://conferences.cirm-math.fr/2560.html

Citation Data

DOI : 10.24350/CIRM.V.19908103
Cite this video as: Celledoni, Elena (2022). Deep learning of diffeomorphisms for optimal reparametrizations of shapes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19908103
URI : http://dx.doi.org/10.24350/CIRM.V.19908103

See Also

Bibliography



Imagette Video

Bookmarks Report an error