En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Delta-matroids as subsystems of sequences of Higgs lifts

Sélection Signaler une erreur
Multi angle
Auteurs : Bonin, Joseph E. (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Delta-matroids generalize matroids. In a delta-matroid, the counterparts of bases, which are called feasible sets, can have different sizes, but they satisfy a similar exchange property in which symmetric differences replace set differences. One way to get a delta-matroid is to take a matroid L, a quotient Q of L, and all of the Higgs lifts of Q toward L; the union of the sets of bases of these Higgs lifts is the collection of feasible sets of a delta-matroid, which we call a full Higgs lift delta-matroid.

We give an excluded-minor characterization of full Higgs lift delta-matroids within the class of all delta-matroids. We introduce a class of full Higgs lift delta-matroids that arise from lattice paths and that generalize lattice path matroids. It follows from results of Bouchet that all delta-matroids can be obtained from full Higgs lift delta-matroids by removing certain feasible sets; to address which feasible sets can be removed, we give an excluded-minor characterization of delta-matroids within the more general structure of set systems. This result in turn yields excluded-minor characterizations of a number of related classes of delta-matroids.
(This is joint work with Carolyn Chun and Steve Noble.)

Keywords : delta-matroids; Higgs lifts; feasible sets; lattice path matroids

Codes MSC :
05B35 - Matroids, geometric lattices

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 03/10/2018
    Date de captation : 26/09/2018
    Sous collection : Research talks
    arXiv category : Combinatorics
    Domaine : Combinatorics
    Format : MP4 (.mp4) - HD
    Durée : 00:21:18
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2018-09-26_Bonin.mp4

Informations sur la Rencontre

Nom de la rencontre : Combinatorial geometries: matroids, oriented matroids and applications / Géométries combinatoires : matroïdes, matroïdes orientés et applications
Organisateurs de la rencontre : Gioan, Emeric ; Ramírez Alfonsín, Jorge Luis ; Recski, Andras
Dates : 24/09/2018 - 28/09/2018
Année de la rencontre : 2018
URL Congrès : https://conferences.cirm-math.fr/1859.html

Données de citation

DOI : 10.24350/CIRM.V.19450603
Citer cette vidéo: Bonin, Joseph E. (2018). Delta-matroids as subsystems of sequences of Higgs lifts. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19450603
URI : http://dx.doi.org/10.24350/CIRM.V.19450603

Voir aussi

Bibliographie



Sélection Signaler une erreur