En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    1

    Island filters for inference on metapopulation dynamics

    Sélection Signaler une erreur
    Multi angle
    Auteurs : Ionides, Edward (Auteur de la Conférence)
    CIRM (Editeur )

    00:00
    00:00
     

    Résumé : Low-dimensional compartment models for biological systems can be fitted to time series data using Monte Carlo particle filter methods. As dimension increases, for example when analyzing a collection of spatially coupled populations, particle filter methods rapidly degenerate. We show that many independent Monte Carlo calculations, each of which does not attempt to solve the filtering problem, can be combined to give a global filtering solution with favorable theoretical scaling properties under a weak coupling condition. The independent Monte Carlo calculations are called islands, and the operation carried out on each island is called adapted simulation, so the complete algorithm is called an adapted simulation island filter. We demonstrate this methodology and some related algorithms on a model for measles transmission within and between cities.

    Keywords : Particle filter; sequential Monte Carlo; spatiotemporal data

    Codes MSC :
    60G35 - Applications (signal detection, filtering, etc.), See Also { 62M20, 93E10, 93E11, 94Axx}
    60J20 - Applications of Markov chains and discrete-time Markov processes on general state spaces
    62M02 - Markov processes: hypothesis testing
    62M05 - Markov processes: estimation
    62M20 - Prediction; filtering (statistics)
    62P10 - Applications of statistics to biology and medical sciences
    65C35 - Stochastic particle methods (numerical analysis)

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 03/03/2020
      Date de captation : 17/02/2020
      Sous collection : Research talks
      arXiv category : Quantitative Biology ; Methodology ; Probability
      Domaine : Probability & Statistics
      Format : MP4 (.mp4) - HD
      Durée : 00:39:24
      Audience : Researchers
      Download : https://videos.cirm-math.fr/

    Informations sur la Rencontre

    Nom de la rencontre : Thematic Month Week 3: Mathematical Modeling and Statistical Analysis of Infectious Disease Outbreaks / Mois thématique Semaine 3 : Modélisation mathématique et analyses statistique des épidémies de maladies infectieuses
    Organisateurs de la rencontre : Britton, Tom ; Forien, Raphaël ; Hubert, Florence ; Pardoux, Etienne
    Dates : 17/02/2020 - 21/02/2020
    Année de la rencontre : 2020
    URL Congrès : https://conferences.cirm-math.fr/2303.html

    Données de citation

    DOI : 10.24350/CIRM.V.19612403
    Citer cette vidéo: Ionides, Edward (2020). Island filters for inference on metapopulation dynamics. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19612403
    URI : http://dx.doi.org/10.24350/CIRM.V.19612403

    Voir aussi

    Bibliographie

    • IONIDES, Edward L., ASFAW, Kidus, PARK, Joonha, et al. Island filters for partially observed spatiotemporal systems. arXiv preprint arXiv:2002.05211, 2020. - https://arxiv.org/abs/2002.05211

    • DEL MORAL, Pierre et MURRAY, Lawrence M. Sequential Monte Carlo with highly informative observations. SIAM/ASA Journal on Uncertainty Quantification, 2015, vol. 3, no 1, p. 969-997. - https://doi.org/10.1137/15M1011214

    • PARK, Joonha et IONIDES, Edward L. A guided intermediate resampling particle filter for inference on high dimensional systems. arXiv preprint arXiv:1708.08543, 2017. - https://arxiv.org/abs/1708.08543

    • SHEPARD, N. et PITT, M. K. Filtering via simulation: auxiliary particle filter. Journal of the American Statistical Association, 1999, vol. 94, p. 590-599. - http://dx.doi.org/10.2307/2670179

    • King, A. A., Nguyen, D. and Ionides, E. L. (2016). Statistical inference for partially observed Markov processes via the R package pomp, Journal of Statistical Software 69: 1–43. - http://dx.doi.org/10.18637/jss.v069.i12

    • Asfaw, K., Ionides, E. L. and King, A. A. (2019). spatPomp: R package for statistical inference for spatiotemporal partially observed Markov processes, - https: //github.com/kidusasfaw/spatPomp

    • IONIDES, Edward L., NGUYEN, Dao, ATCHADÉ, Yves, et al. Inference for dynamic and latent variable models via iterated, perturbed Bayes maps. Proceedings of the National Academy of Sciences, 2015, vol. 112, no 3, p. 719-724. - https://doi.org/10.1073/pnas.1410597112

    • ANDRIEU, Christophe, DOUCET, Arnaud, et HOLENSTEIN, Roman. Particle markov chain monte carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2010, vol. 72, no 3, p. 269-342. - https://doi.org/10.1111/j.1467-9868.2009.00736.xISTEX



    Sélection Signaler une erreur
    Close